Institut für anorganische Chemie
der Universität Hannover

Oxidation von Lebensmittelinkohlstoffen – Untersuchungen mit Hilfe der Clark-Meßzelle

Staatsexamensarbeit

im Rahmen der wissenschaftlichen Prüfung für das Lehramt an Gymnasien im Fach Chemie

vorgelegt von

Marco Nicolai

Matrikel-Nr.: 1320954

Prüfungs-Nr.: 7129

unter der Leitung von AOR Manfred Jäckel

Hannover, im Juli 1995
Inhalt

1. Einleitung ... 4

Verwendete Abkürzungen und Symbole 6

2. Grundlagen: Meßtechnik und biochemische Vorgänge 7

2.1 Sauerstoffmessung und Ascorbinsäurebestimmung 7

2.1.1 Sauerstofflöslichkeit in Wasser 7

2.1.2 WINKLER-Methode 9

2.1.3 Membranbedeckter Sensor nach CLARK 10

2.1.4 Quantitative Bestimmung von Ascorbinsäure 13

2.2 Enzymatische Bräunung 17

2.2.1 Der Ablauf der enzymatischen Bräunung und die 18
 beteiligten Enzyme

2.2.2 Substrate in Apfelsäften 20

2.2.3 Weitere Substrate für PPO 21

2.2.4 Temperatur- und pH-Einflüsse 22

2.2.5 Aussehen und Geschmack 23

2.2.6 Verhinderung der enzymatischen Bräunung 23

2.2.7 "Ascorbinsäurebräunung" / MAILARD-Reaktion 26

2.3 Oxidation von Vitamin C und damit verbundener 27
 Sauerstoffverbrauch

2.4 Fettoxidation ... 29

2.4.1 Radikalkettenreaktion 29

2.4.2 Aromafehler .. 30

2.4.3 Reaktionen während der Induktionsperiode 31

2.4.4 Methoden zur Verlängerung der Haltbarkeit 33
 keitszeit von fetthaltigen Lebensmitteln

2.5 Andere Ursachen für einen Sauerstoffverbrauch von ... 35
 Lebensmitteln

3. Material und Arbeitstechniken 37

3.1 Die Sauerstoffmeßgeräte 37

3.2 Versuchsaufbauten 38
1. Einleitung

Fast jeder Endverbraucher hat eine Meinung zu Lebensmittelzusatzstoffen, der eine kauft kein Lebensmittel, das diese Stoffe enthält, der andere toleriert alles, was Lebensmittel den Sinnen attraktiv erscheinen läßt. Lebensmittelhersteller kommen ihrer Kennzeichnungspflicht in den Verbraucher manipulierender Weise nach, indem sie - je nachdem, was verkaufsfördernder erscheint - verschiedene Bezeichnungen verwenden (Vitamin C oder E 300; Phosphorsäure oder E 338).

In dieser zeitlos populären Diskussion spielt ein Aspekt nur eine untergeordnete Rolle: welche Veränderungen laufen in Lebensmitteln ab, wenn auf Zusatzstoffe vollständig verzichtet wird? Aus der Masse der Einflüsse, die Veränderungen in Lebensmitteln hervorrufen, soll hier der Sauerstoff herausgegriffen und näher untersucht werden. Was geschieht zum Beispiel in dem Stück Obst oder dem aufbackbaren Brötchen, wenn sie Luft und damit Sauerstoff ausgesetzt werden, und welche Faktoren beeinflussen diese Prozesse?

Das Braunwerden von Obst und Gemüse, das Ranzigwerden von Butter und anderen Fetten sowie Vitaminverluste sind Vorgänge, die uns im Alltag immer wieder begegnen. Auch wenn diese Erscheinungen nicht immer sichtbar werden bzw. geruchlich oder geschmacklich wahrzunehmen sind, so zeigen zumindest Vakuum- oder Schutzgasverpackungen und Packungsaufdrucke wie "mit Antioxidationsmittel E 220", daß Sauerstoff einen Einfluß auf Lebensmittel haben kann. Von welcher Bedeutung beispielsweise die Farbe des Lebensmittels für den Endverbraucher und damit auch für den Lebensmitteltechniker ist, zeigt die Beschäftigung mit diesem Aspekt sogar in der fachfremden Öffentlichkeit:

* Schwefeldioxid

Weil die einfache Messung des Sauerstoffverbrauchs nur indirekt einen Einblick in die Vorgänge in Lebensmitteln gibt, müssen Verfahren entwickelt werden, die Aussagen über den Oxidationsprozeß von Inhaltsstoffen wie Enzymen und Substraten erlauben.

Verwendete Abkürzungen und Symbole:

- a Aktivität
- α Bunsenscher Absorptionskoeffizient
- AS Ascorbinsäure
- b Blindwert
- c Konzentration
- \(c_s \) Sättigungskonzentration
- \(d_N \) NERNSTsche Diffusionsschicht
- DCPIP 2,6-Dichlorphenolindophenol Natriumsalz-Dihydrat
- DDTC Natriumdiethyldithiocarbaminat-Trihydrat
- DHAS Dehydroascorbinsäure
- EDTA Ethylendiamintetraessigsäure Dinatriumsalz (Titriplex III)
- \(f \) Aktivitätskoeffizient
- F Faradaykonstante
- \(F_{DCPIP} \) Titer der DCPIP-Lösung
- \(I_D \) Diffusionsgrenzstrom
- \(M \) Molmasse
- \(n_D \) Diffusion durch eine Membran
- \(p \) Druck
- \(p_0 \) Normaldruck
- \(P_M \) Permeabilität einer Membran
- PPO Polyphenoloxidase
- Prot. Protein
- \(s \) Sättigungsindex
- \(U_{POL} \) Polarisationsspannung
- DCPIP 2,6-Dichlorphenolindophenol
- \(x \) Molenbruch
- \(V_{0,m} \) Molvolumen
- \(z \) Anzahl der Elektronen (NERNSTsche Gleichung)
2. Grundlagen: Meßtechnik und biochemische Vorgänge

2.1 Sauerstoffmessung und Ascorbinsäurebestimmung

2.1.1 Sauerstofflöslichkeit in Wasser

Kommst sauerstofffreies Wasser mit Luft in Berührung, so geht Sauerstoff neben anderen Gasen in Lösung. Es bildet sich bei Luftsättigung ein Gleichgewichtszustand, bei dem die Aktivität° des gelösten Sauerstoffs dem Sauerstoffpartialdruck der darüberstehenden Atmosphäre entspricht. Unter der Annahme, daß sich Luft bei den zu betrachtenden Druck- und Temperaturverhältnissen ideal verhält und der Sauerstoffpartialdruck der Luft proportional zur Sauerstoffaktivität in diesem Gasgemisch ist, gilt

\[p(O_2, \text{Luft}) \sim a(O_2, \text{Luft}) \]

und damit

\[a(O_2, \text{Luft}) = a(O_2, \text{Wasser}) \]

für das Gleichgewicht. Da für dieses System die Sauerstoffaktivität im Wasser durch den O₂-Partialdruck der Luft bestimmt wird, ist er druckabhängig.

\[p(O_2) = x(O_2, \text{Luft}) \cdot p(\text{Luft}) \]

° In [14 und 18] wird konsequent der Begriff Partialdruck für gelösten Sauerstoff verwendet, \(p(O_2, \text{Luft}) = p(O_2, \text{Wasser}) \) für den Gleichgewichtszustand.
Bei Gleichgewicht zwischen Atmosphäre und Wasser folgt unter Berücksichtigung des Wasserdampfdrucks

\[p'(O_2) = x(O_2) \cdot (p(\text{Luft}) - p(\text{Wasserdampf})) \]

Die Sauerstofflöslichkeit ist bei konstantem \(p \) und \(T \) noch von den Eigenschaften des Lösungsmittels abhängig, während die Sättigungsaktivität unter den gleichen Bedingungen eine Konstante darstellt. Damit wird eine Sauerstoff-Sättigungsaktivität in Lösung von dem \(O_2 \)-Partialdruck der Luft vorgegeben, und es stellt sich eine lösungsmittelabhängige \(O_2 \)-Sättigungskonzentration im Gleichgewicht mit Luft ein. Die Beziehung zwischen Aktivität und Sauerstoffsättigungskonzentration (\(c_s \)) wird durch Gleichung 5 beschrieben.

\[c_s(T) = \frac{a(O_2)}{p_s} \cdot \alpha(T) \cdot \frac{M(O_2)}{V_0} \]

\[c_s(p(\text{Luft})) = c_s(p_s) \cdot \frac{p(\text{Luft})}{p_s} \]

In der Praxis steht Wasser nicht immer mit Luft im Gleichgewicht. So können über- und ungesättigte Wässer auch in Kontakt mit Luft rech stabil sein. Daher sind \(O_2 \)-Konzen-

* Streng genommen gilt dies auch für \(p(\text{Luft}) \) für ein abgeschlossenes System. Dies kann jedoch durch eine kleine Bühreung in Gefäß umgangen werden, damit bleibt die Luft wasserdampfgesättigt, der Gesamtdruck ist jedoch gleich dem Atmosphärendruck.
trationen von 0 – 70 mg/l (bei 0 °C, 1013 mbar) möglich [19, S.167]. Die Löslichkeit für Sauerstoff bei Normaldruck und Raumtemperatur beträgt 44 mg/l. Die Sauerstoffkonzentration für luftgesättigtes Wasser unter gleichen Druck- und Temperaturbedingungen liegt bei 9,07 mg/l.

Neben der Massenkonzentrationsangabe ist noch der Sauerstoffsättigungsindex üblich. Er gibt das Verhältnis von Konzentration zum Sättigungswert (für das Gleichgewicht mit Luft) in Prozent an.

\[s = \frac{c}{c_s} \cdot 100 \% \]

\[a(O_2)_{(aq)} = \frac{f_{(O_2)} \cdot x(O_2)_{(aq)}}{f_{(H_2O)}} \]

2.1.2 WINKLER-Methode

\[
\begin{align*}
2 \text{Mn}^{2+} + 4 \text{OH}^- + \text{H}_2\text{O} & \rightarrow 2 \text{Mn(OH)}_3 \\
2 \text{Mn(OH)}_3 + 6 \text{H}^+ + 3 \text{I}^- & \rightarrow 2 \text{Mn}^{2+} + 3 \text{I}_3^- + 6 \text{H}_2\text{O} \\
\text{I}_3^- & \rightarrow \text{I}_2 + \text{I}^-
\end{align*}
\]

Abb.1 Methode nach WINKLER
Der im Wasser gelöste Sauerstoff oxidiert in alkalischen Medium Mn(II) zu Mn(III), welches als Mn(OH)₃ ausfällt. Nach Ansäubern wird Iodid zugegeben. Mn(III) oxidiert das Iodid zu Iod (Abb.1). Durch Rücktitration des Iods mit Thiosulfatlösung wird dann der Sauerstoffgehalt bestimmt. Das Azid dient dazu, Störungen durch Nitrit zu umgehen.

Der Vorteil aller Titrationsmethoden besteht darin, daß sich aufgrund des stöchiometrischen Prinzips die Sauerstoffmassenkonzentration direkt bestimmen läßt.

2.1.3 Membranbedeckte Elektrode nach CLARK

Die polarographische Sauerstoffbestimmung beruht auf der Reduktion von gelöstem Sauerstoff an einer Goldkathode, während die Silberanode oxidiert wird (Abb.2). Bevor auf die CLARK-Elektrode genauer eingegangen wird, werden vorweg die Vorgänge an den Elektroden erläutert.

\[
\begin{align*}
O_2 + 2 H_2O + 4 e^- & \rightarrow 4 OH^- & E^0 = 401 \text{ mV} \\
4 Ag + 4 Br^- & \rightarrow 4AgBr + 4e^- & E^0 = 71,3 \text{ mV} \\
O_2 + 2 H_2O + 4Ag + 4Br^- & \rightarrow 4 OH^- + 4 AgBr
\end{align*}
\]

Abb.2 Elektrodenreaktionen des O₂-Sensors, nach [14, S.27]

Da diese Reaktion nicht spontan abläuft, muß sie durch eine äußere Spannung erzwungen werden. Deshalb wird eine Polarisationsspannung (\(U_{POL}\)) zwischen der Arbeitselektrode (A) und der Bezugselektrode (B) angelegt und durch einen Potentiostaten elektronisch konstant gehalten (Abb.3). Zwischen Gegenelektrode und Arbeitselektrode wird dann ein Strom gemessen, der als Meßsignal dient. In der Praxis werden jedoch Gegen-
und Bezugselektrode meist zusammengefaßt. Die Höhe der Polarisationsspannung richtet sich in etwa nach den Standardredoxpotentialen (Abb. 2). Sie wird aber aus der Strom/Spannungskurve (Abb. 4) experimentell ermittelt.

Abb. 4 Strom / Spannungskurve für Sauerstoff gegen die Normal-Wasserstoffsäure, nach [14, S.21]

Bei kleinen Spannungen fließt nur ein geringer Nullstrom. Wird durch Erhöhung der Spannung das Abscheidungspotential [17, S.3267] des am leichtesten zu reduzierenden Stoffes \((O_2)\)* erreicht, so nimmt die Stromstärke bei anwachsender Spannung stark zu, weil die Reduktion des Sauerstoffs einsetzt. Bei Erreichen eines gewissen Grenzwertes (Diffusionsgrenzstrom \(I_D\)) schließt sich dem durchtrittsbestimmten Teil der Kurve ein Plateaubereich an, den die aus der Lösung durch Diffusion an die Arbeitselektrode gelangenden Sauerstoffmoleküle werden an dieser sofort reduzieren. Dabei wird die Diffusionsgeschwindigkeit bei konstanter Temperatur von der Differenz zwischen der Konzentration in der Lösung und an der Elektrodenoberfläche (dort ist sie Null!) bestimmt. Der Wert des Diffusionsgrenz-

*Die Elektrolytzusammensetzung ist so gewählt, daß Sauerstoff der am leichtesten zu reduzierende Stoff ist.

\[
I_n = n \cdot F \cdot D \cdot \frac{c}{d_N} \cdot A
\]

\[
I_n = n \cdot F \cdot P_m \cdot \frac{a(O_2)}{b} \cdot A
\]

Der Grund dafür ist wahrscheinlich darin zu sehen, daß sich die Diffusion durch die Membran \(n_b \) proportional zur Aktivität verhält (Abb.6). Damit wird die Sauerstoffaktivität gemessen. Über diese Aktivitätsmessung bestimmt das Meßgerät die \(O_2 \)-Konzentration (vgl. 2.1.1). Das hat zum einen den Vorteil, daß die Eichung des Gerätes an Luft möglich ist, andererseits aber den Nachteil, daß eine Korrektur für die
Sauerstofflöslichkeit bei Anwesenheit anderer gelöster Stoffe durchgeführt werden muß.

Abb.5 Membranbedeckte Elektrode nach CLARK, nach [14, S.23]

Abb.6 Diffusion im System Luft / Wasser / Sensor

\[
E_{\text{Ag/AgBr}} = E^\circ_{\text{Ag/AgBr}} - \frac{RT}{zF} \cdot \ln c(\text{Br}^-)
\]

2.1.4 Quantitative Bestimmungsmethoden von Ascorbinsäure

Ascorbinsäure ist ein starkes Reduktionsmittel, daher beruhen auch die meisten Bestimmungsmethoden auf dieser Eigenschaft. Da jedoch in Lebensmitteln mit anderen
reduzierenden Substanzen (zum Beispiel phenolische Verbindungen) zu rechnen ist, kann es hier zu Störungen kommen. Einige Methoden arbeiten daher mit Farbkupplern die spezifisch mit Ascorbinsäure reagieren sollen.

Neben maßanalytischen und photometrischen Techniken gibt es auch ein Teststäbchensystem sowie die Möglichkeit der polarographischen Bestimmung. Allein die große Anzahl der Methoden, für die vielfach noch unterschiedliche Modifikationen vorgeschlagen werden, geben einen Eindruck über die Problematik der Ascorbinsäurebestimmung in Lebensmitteln.

Die Redoxtitrationen beruhen einerseits auf der Entfärbung von farbigen anorganischen Oxidationsmitteln oder organischen Farbstoffen durch die Reduktionswirkung der Ascorbinsäure. Andererseits kann während einer Titration mit einem Oxidationsmittel das Redoxpotential gemessen und somit der Äquivalenzpunkt bestimmt werden.

Bei den photometrischen Methoden wird ein Reagenz im Überschuß zugesetzt, welches mit Ascorbinsäure eine Verbindung eingeht (Kupplungsreaktion) oder reduziert wird. In jedem Fall entsteht eine Färbung, die der Konzentration von Ascorbinsäure proportional ist.

Die Bestimmung mit 2,6-Dichlorphenolindophenol (DCPIP). Die erste titrimetrische Methode (TILLMANN, 1936) beruht auf der Verwendung von DCPIP. Der blaue (in saurem Medium rosafarbene) Farbstoff wird durch Ascorbinsäure in seine

![Diagramm: 2,6-Dichlorphenolindophenol und Leuko-Verbindung](image)

Abb.7 Ascorbinsäurebestimmung mit 2,6-Dichlorphenolindophenol, nach [11, S.220]

Quantitative Redoxpotentiomessungen. BLUME, BADER und PLAUSCHINAT [7, S.293-296] beschreiben die Möglichkeit Vitamin C titrimetrisch bei gleichzeitiger Messung des Redoxpotentials zu bestimmen. Das Potential der Halbzelle Ascorbinsäure/Dehydroascorbinsäure hängt nach der NERNSTschen Gleichung von der Konzentration der Ascorbinsäure ab. Die Spannung zwischen einer Indikatorelektrode (Platin oder Silber) in Ascorbinsäurelösung und einer Bezugselektrode (Hg/Hg2Cl2 oder Hg/HgSO4 in gesättigter Kaliumchlorid- bzw. -sulfat-Lösung) wird gemessen. Gleichzeitig wird die Ascorbinsäure mit einem Oxidationsmittel (Silbernitrat, Kaliumhexacyanoferrat(III), Eisen(III)-chlorid, Kaliumbromat oder Cer(IV)-
sulfat) titriert. Der Endpunkt der Titration ist erreicht, wenn auf Grund überschüssigen Oxidationsmittels das Potential sprunghaft ansteigt.

Teststäbchen. Die Firma Merck arbeitet mit Phosphormolybdat (wahrscheinlich dem schwerlöslichen Ammoniumsalz der Phosphormolybdänsäure H₇[PO₄Mo₇O₂₇]·28H₂O), welches durch Reduktion in intensiv blau gefärbtes Molybdänblau überführt wird. Die Färbung ist auf die gleichzeitige Anwesenheit von Mo(IV) und Mo(VI) in der valenzgemischten Verbindung MoO₃−ₓ(OH)ₓ zurückzuführen [17, S.2658, 2660, 1693]. Die Bestimmung erfolgt über einen Farbvergleich der sich einstellenden Mischfarbe der Reaktionszone des Teststäbchens zwischen Phosphormolybdat (gelb) und Molybdänblau mit einer Farbskala. Eine Anleitung zur Herstellung von Vitamin C-Teststreifen findet sich in [30, S.272].

Farbkupplungsreaktion mit 2,4-Dinitrophenylhydrazin. Ketone und Aldehyde können mit Stickstoffbasen eine Kondensationsreaktion eingehen. Bei Ascorbinsäure liegt zwar eine Carbonylfunktion vor, aber es handelt sich um die eines intramolekularen Esters. Hier ist die Positivierung des Kohlenstoffs (Voraussetzung für diesen nukleophilen
Abb. 8 Ascorbinsäurebestimmung mit 2,4-Dinitrophenylyhydrizin, nach [7, S.296]

Angriff) nicht gegeben. Daher muß Ascorbinsäure erst zu Dehydroascorbinsäure oxidiert werden. Dies geschieht in der Regel mit Iod. 2,4-Dinitrophenylyhydrizin bildet mit Dehydroascorbinsäure ein intensiv orange-rote Osazon (Abb.8), welches nach etwa 5-10 Minuten ausfällt und filtriert werden kann. Der Feststoff kann in Schwefelsäure gelöst und photometrisch bestimmt werden [7, S.296].

2.2 Enzymatische Bräunung

ablaufen die durch den oxidativen Abbau von Ascorbinsäure eingeleitet werden können. In diesem Zusammenhang soll darauf jedoch nicht weiter eingegangen werden.

2.2.1 Der Ablauf der enzymatischen Bräunung und die beteiligten Enzyme

Die verschiedenen Enzyme (in ihrer Gesamtheit Polyphenoloxidasen oder kurz PPO genannt)*, die für die Bräunungsreaktionen verantwortlich sind, besitzen allesamt zwei Kupferionen im aktiven Zentrum. Diese sind jeweils über den Iminstickstoff zweier Aminosäuren Histidin an ein Protein gebunden (Abb.9).

Diese Struktur spielt bei der bereits angesprochenen Phenoloxidation durch Luftsauerstoff eine wichtige Rolle, SOLOMON et al. [21, S.208] postulieren hierzu einen möglichen Reaktionsmechanismus (Abb.10), bei dem je 1 Mol O₂ pro Mol Phenol verbraucht wird.

* Auch Begriffe wie Phenolase oder Tyrosinase werden verwendet.
Die hierbei entstehenden gelblichen o-Chinone können mit anwesenden Phenolen zu phenolischen Dimeren weiterreagieren. Es entsteht also wiederum ein PPO-Substrat, welches nach erneuter Oxidation zur Bildung von braunen Polymerisationsprodukten führt (Abb. 11).

Einige dimere Pflanzenphenole (Procyanidine, Abb. 13) zeigen allerdings keine beschleunigte Oxidation durch Sauerstoff bei Anwesenheit von PPO. Sie können jedoch durch enzymatisch entstandenens Chinon oxidiert werden und somit ebenfalls polymerisieren (Abb. 11).

Abb. 11 Reaktionen von o-Chinonen mit phenolischen Inhaltsstoffen in Anwesenheit von Polyphenoloxidase, nach [20, S.502]

Wie wird die enzymatische Bräunung nun aber in Gang gesetzt? Der Vorgang setzt beim Pressen des Fruchtsaftes ein. Hierdurch werden die Pflanzenzellen zerstört und die PPO und ihre Substrate treten in Kontakt, so daß es zur Phenoloxidation und Polymerisation kommen kann. Die PPO liegen hierbei gebunden an Trübstoffe vor [32, S.68], zu denen vor allem unlösliche Zellbestandteile wie Mem-
branbruchstücke, Zellwandbestandteile, Cellulose, etc. zählen. In der lebenden Zelle sind PPO und Substrate räumlich voneinander getrennt. Während PPO an Membranstrukturen der Chloroplasten (Thylakoide), Mitochondrien und Peroxisomen gebunden sind [20, S.500], befinden sich die Substrate im Cytoplasma. Dabei ist bisher noch ungeklärt, welche Funktion die PPO im Stoffwechsel der Pflanze überhaupt einnehmen [35, S.659–665].

Aufgrund der Umsetzung verschiedener Substratformen werden die PPO in zwei Klassen eingeteilt (Abb.12). Erstens Cresolases (Hydroxylierung von Monophenolen zu o-Dihydroxyphenolen) und Catecholases (Oxidation von o-Dihydroxyphenolen zu den entsprechenden Chinonen), zweitens Laccasen (Oxidation von ortho- und para-Dihydroxyphenolen zu den entsprechenden Chinonen).

![Abb.12 PPO-katalysierte Reaktionen, nach [20, S.500]](image)

2.2.2 Substrate in Apfelsäften.

![Abb.13 Die wichtigsten Phenole in Äpfeln, nach [22, S.356]](image)

<table>
<thead>
<tr>
<th>Chlorogensäure</th>
<th>980 mg/l</th>
<th>2,85 mmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epicatechin</td>
<td>380 mg/l</td>
<td>1,35 mmol/l</td>
</tr>
<tr>
<td>Phloridzin</td>
<td>190 mg/l</td>
<td>0,40 mmol/l</td>
</tr>
<tr>
<td>Procyanadin B2</td>
<td>450 mg/l</td>
<td>0,80 mmol/l</td>
</tr>
<tr>
<td>andere dimere</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procyanidine</td>
<td>340 mg/l</td>
<td>0,60 mmol/l *</td>
</tr>
<tr>
<td>trimere Procyanidine</td>
<td>260 mg/l</td>
<td>0,31 mmol/l *</td>
</tr>
<tr>
<td>teramere Procyanidine</td>
<td>210 mg/l</td>
<td>0,19 mmol/l *</td>
</tr>
<tr>
<td>oligomere / polymere Procyanidine</td>
<td>3350 mg/l</td>
<td></td>
</tr>
</tbody>
</table>

Tab.1 Typische Phenolzusammensetzung für einen bitter-süß en geren Apfelmast (elder) nach [22, S.356]
* berechnet als das jeweilige Vielfache von Epicatechin

2.2.3 Weitere Substrate für PPO

2.2.4 Temperatur- und pH-Einflüsse.

Das pH-Optimum liegt im neutralen Bereich, unterhalb von pH 3 und oberhalb von pH 10 ist ebenfalls mit einer irreversible Inaktivierung zu rechnen.

Abb.14 pH- und Temperaturabhängigkeit der PPO-Aktivität [12, S.345]

2.2.5 Aussehen und Geschmack.

Die Oxidation der phenolischen Inhaltsstoffe von Fruchtsäften ist aus kosmetischen Gründen (Braunfärbung) ein Problem. So sieht ein heller Trübsaft frischer aus und läßt sich besser verkaufen. Die Procyanidine im Apfelsaft zeichnen sich im Geschmack durch Bitterkeit und Adstringenz aus und tragen so zu dem typischen Apfelsaftgeschmack bei. Das Gleichgewicht dieser beiden Geschmacksnoten ist jedoch abhängig vom Molekulargewicht der Procyanidine (Abb.15) [22, S.357], so daß eine Steuerung der Oxidation auch aus diesen Gründen notwendig ist.

Abb.15 Beziehung zwischen Geschmacksempfindung und Procyanidinpolymerisation [22, S.357]
1.2.6 Verhinderung der enzymatischen Bräunung

In der Lebensmittelherstellung finden Ascorbinsäure, Schwefeldioxid, Zitronensäure und Benzoësäure als Zusatzstoffe Anwendung. Sie haben die Eigenschaft, gesundheitlich als unbedenklich zu gelten. Als Inhibitoren sind aber weitere Stoffe bekannt, sie sollen hier ihrer Wirkung nach geordnet wiedergegeben werden (Tab.2).

| 1. **Inhibitoren welche die Zentrallonen (Kupfer) im aktiven Zentrum des Enzyms angreifen** |
|---------------------------------|---------------------------------|
| Zitronensäure [12, S.345] | Cyanid [20] |
| Azide [20 S.504] | DDTC [20] |
| Ethylxanthate [20] | |

<table>
<thead>
<tr>
<th>2. Inhibitoren welche mit dem Substrat um das Enzym konkurrieren (kompetitive Hemmung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brenzatechin [26, S.100]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Inhibitoren welche die Reaktion rückgängig machen (starke Reduktionsmittel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascorbinsäure [1, S.201]</td>
</tr>
</tbody>
</table>

Tab.2 Inhibitoren von PPO

Die Stoffe der Gruppe 2. Einige Substanzen konkurrieren mit den Substraten um das Enzym, ohne oxidiert zu werden (Phenylcarbonsäuren und Sorbinsäure) oder sie werden oxidiert, zeigen jedoch keine so starke Bräunung (Brenzcatechin ?). Gerade hier sind oft gegensätzliche Angaben in der Literatur zu finden. So werden Substanzen als Inhibitoren erwähnt die an anderer Stelle Substrate darstellen. Das Brenzcatechin beispielsweise wurde in der vorliegenden Arbeit erfolgreich als Substrat eingesetzt.

Abb.16 Inhibitorwirkung von Ascorbinsäure [1, S.201]

Abb.17 Reaktion von Sulfit mit phenol. Inhaltsstoffen [12, S.346]

Auch für Ascorbinsäure und Dehydroascorbinsäure wurde eine direkte Wechselwirkung mit dem Enzym nachgewiesen [2, S.765].

Abb.18 Reaktionen von o-Chinonen mit Proteinen, nach [20, S.503]

Diese Enzymhemmung ist allerdings für die Verhinderung und Steuerung der enzymatischen Bräunung nicht geeignet, da es in diesem Fall die Chinone sind, die das Aussehen und den Geschmack eines Lebensmittels beeinflussen. Es wäre demnach nicht sinnvoll, einen Vorgang den man verhindern will, erst einmal ablaufen zu lassen, damit die unerwünschten Produkte im nachhinein die Ursache ihrer Entstehung zerstören.

Für Experimente mit Polyphenoloxidases ist die Gerbwirkung der Reaktionsprodukte allerdings ein unerwünschter Nebeneffekt, der sicherlich gerade bei Messungen über längere Zeiträume ins Gewicht fällt.
Zusammenfassend werden die Mechanismen für die Steuerung der enzymatischen Bräunung mit den in der Lebensmitteltechnik gebräuchlichen Stoffen in (Abb.19) dargestellt.

Abb.19 Reaktionsschema: Inhibition der enzymatischen Bräunung [12, S.347]

2.2.7 "Ascorbinsäurebräunung" / MALLARD-Reaktion

Abb.20 Reakt. von Dehydroascorbinsäure mit Aminosäuren [1, S.201]
2.3 Oxidation von Vitamin C und damit verbundener Sauerstoffverbrauch

Abb. 21 Fe$^{3+}$-katalysierte Oxidation von Ascorbat nach [1, S.199]

Abb. 22 Oxidativer Abbau von Ascorbinsäure, nach [1, S.200]
In der Lebensmittelverarbeitung werden diese Prozesse unter dem Begriff "Vitamin C-Verluste" zusammengefaßt. Gewöhnlich ist an allen Reaktionen Sauerstoff beteiligt. Theoretisch reagiert ein Sauerstoffmolekül, über Wasserstoffperoxid als Zwischenprodukt, mit zwei Molekülen Ascorbinsäure (Abb. 23).

\[
\begin{align*}
\text{AS} & \quad \quad \rightarrow \quad \text{DHAS} \quad + \quad 2 \ e^- \\
\text{O}_2 \quad + \quad 2 \ H^+ \quad + \quad 2 \ e^- & \quad \rightarrow \quad \text{H}_2\text{O}_2 \\
\text{AS} & \quad + \quad \text{O}_2 \quad \rightarrow \quad \text{DHAS} \quad + \quad \text{H}_2\text{O}_2 \\
\text{AS} & \quad + \quad \text{H}_2\text{O}_2 \quad \rightarrow \quad \text{DHAS} \quad + \quad 2 \ \text{H}_2\text{O} \\
2 \ \text{AS} \quad + \quad \text{O}_2 & \quad \rightarrow \quad 2 \ \text{DHAS} \quad + \quad 2 \ \text{H}_2\text{O}
\end{align*}
\]

Abb. 23 Oxidation von Ascorbinsäure, verändert nach [3, S.298]

Der Vitamin C-Verlust ist von Bedeutung für Citrusfäße, schwarzen Johannisbeersaft sowie Erdbeer- und Sanddorn-Süßmost, während Apfel- und Traubensaft von vornherein kaum Ascorbinsäure aufweisen. Da bereits bei der Herstellung Vitamin C verlorengeht (zu Dehydroascorbinsäure oxidiert wird), wird es in vielen Fällen nachdosiert, um die enzymatische Bräunung zu verhindern. Meist weist der Hersteller in verwirksamer Weise auf den besonders hohen Vitamin C-Gehalt eines Getränks hin, tatsächlich hat er den Saft aber nicht so sehr aus Sorge um die Gesundheit des Verbrauchers vitaminiert, sondern um die Farbe des Getränks zu erhalten.
2.4 Fettoxidation

Eine der Ursachen für den Verderb von Fetten und fetthal-
tigen Lebensmitteln ist die Reaktion von ungesättigten Fett-
säuren mit Sauerstoff. Als Folge dieser Reaktion können
Geruchs- und Geschmacksstoffe entstehen, die oft schon in
äußerst geringen Konzentrationen einen ranzigen, tranigen,
metallischen oder fischigen Aromafehler ("off-flavour")
verursachen. Der zeitliche Verlauf dieser radikalischen
Oxidation läßt sich in die drei Abschnitte Induktions-
periode, Kettenwachstum und -verzweigung und schließlich den
Kettenabbruch einteilen. Durch Licht wird die Fettoxidation
beschleunigt. In diesem Zusammenhang spielen Photosensi-
bilisatoren (z.B. Chlorophyll) und Sauerstoff im
Singulettzustand eine Rolle. Der Verderb kann durch
Antioxidationsmittel wie Vitamin E in Verbindung mit dem
fettlöslichen Vitamin C-Derivat Ascorbyl-6-palmitat hinaus-
gezögert werden.

2.4.1 Radikalkettenreaktion

Die Geschwindigkeit der
Fettoxidation nimmt nach
einer gewissen Induktions-
periode exponentiell zu
(Anfang von Zeitraum B,
Abb.24). Dies läßt sich
mit den autokatalytischen
Schritten 3 und 4 in
Abbildung 25 erklären. Hier

Abb.24 Fettoxidation [1, S.203]
(A: Induktionszeit, B: Kettenwachstum
und -verzweigung, C: Kettenabbruch)

<table>
<thead>
<tr>
<th>Start:</th>
<th>Bildung von R· oder RO2·</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kettenwachstum:</td>
<td>(1) R· + O2 → RO2·</td>
</tr>
<tr>
<td></td>
<td>(2) RO2· + RH → ROOH + R·</td>
</tr>
<tr>
<td>Kettenverzweigung:</td>
<td>(3) ROOH → RO· + ·OH</td>
</tr>
<tr>
<td></td>
<td>(4) 2 ROOH → ROO· + RO· + H₂O</td>
</tr>
<tr>
<td>Kettenabbruch:</td>
<td>(5) 2 RO2· → ROOR + O₂</td>
</tr>
</tbody>
</table>

Abb.25 Elementarschritte der Autoxidation von Fetten [25, S.71]

Abb. 26 Kettenabbruch und Disproportionierung aufgrund der Reaktion von zwei Peroxidradikalen, nach [24, S. 72]

2.4.2 Aromafehler

Die aus der Radikalkettenreaktion hervorgehenden Hydro- und Dialkylperoxide sind geruch- und geschmacklose Verbindungen. Die durch Disproportionierung entstehenden Vinylketone (Abb. 26 z.B. das 1-Octen-3-on) und flüchtigen Aldehyde (die erst sekundär, wahrscheinlich durch Zerfall der Hydroperoxide (Abb. 27), entstehen) machen den Großteil des "off flavours" aus. Dabei ist die Reaktionsfähigkeit

Abb. 27 Zerfall von Monohydroperoxiden zu Aldehyden [24, S. 74]

der Fettsäuren (Die Reaktionsgeschwindigkeit nimmt mit der Anzahl der Doppelbindungen zu) weniger ausschlaggebend, vielmehr sind die oftmals geringen Schwellenkonzentrationen (Tab. 3) der entstehenden flüchtigen Carbonylverbindungen für die Geschmacksveränderung verantwortlich. Darauf ist wohl auch der relativ schnelle Verderb von Butter und Rinderm- bzw. Hammeltauf zurückzuführen. Diese Lebensmittel enthalten (zwar in nur geringer Konzentration) cis-11, cis-15-

* Hier werden sowohl Sauerstoff, als auch Kohlenstoff disproportioniert, wobei einem Fall die Positivierung des Kohlenstoff[11] erniedrigt wird, also in gewissen Sinne reduziert wird:

- $4 \, O^{2-} + 2 \, e^- \rightarrow 2 \, O_2^{2-} + O_2^{(1)}$
- $2 \, C^{11+} + H^{(1)} \rightarrow C^{(1)} + C^{11+} + H^{1+} + 2 \, e^-$
Octadecadiensäure, welche aber als Vorläufer für das cis-4-Heptanal mit besonders hohem Aromapotential gilt [24, S.74].

<table>
<thead>
<tr>
<th>Verbindung</th>
<th>Aroma</th>
<th>Aromaschwelle (mg/kg)</th>
<th>Geruch</th>
<th>Geschmack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heptanal</td>
<td>lederig, nach Kitt</td>
<td>3,2</td>
<td>0,042</td>
<td></td>
</tr>
<tr>
<td>Octanal</td>
<td>essig</td>
<td>0,32</td>
<td>0,065</td>
<td></td>
</tr>
<tr>
<td>trans-2-Heptanal</td>
<td>fettig, nach Kitt</td>
<td>14,0</td>
<td>0,63</td>
<td></td>
</tr>
<tr>
<td>trans-2-Octenal</td>
<td>fettig, nach Walnüssen</td>
<td>7,9</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>trans-2-Nonenal</td>
<td>salzig, nach Gurken</td>
<td>3,2</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>trans-3-Nonenal</td>
<td>nach frischen Gurken</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trans-2,trans-4-Nonadienal</td>
<td>fettig nach Spülwasser</td>
<td>2,15</td>
<td>0,28</td>
<td></td>
</tr>
<tr>
<td>trans-2,cis-4-Decadienal</td>
<td>Frittieraroma</td>
<td>0,01</td>
<td>0,0016</td>
<td></td>
</tr>
<tr>
<td>1-Octen-3-on</td>
<td>nach Metall</td>
<td>0,005</td>
<td>0,0004</td>
<td></td>
</tr>
</tbody>
</table>

Tab.3 Flüchtige Carbonylverbindungen aus autoxidierten Fett- säuren und Aromaschwellen von Aldehyden gelöst in Paraffinöl (Auszug aus [27, S.73,74])

2.4.3 Reaktionen während der Induktionsperiode

Licht vermag die Induktionsperiode zu verkürzen, somit die Radikalkettenreaktion schneller einzuleiten und damit kommt es zu einem frühzeitigen Verderb des Lebensmittels.

Diese Lichtempfindlichkeit der Fette ist auf die Bildung von Sauerstoff im 1. Singulettzustand (\(^{1}\text{O}_2\)) zurückzuführen. In Abbildung 28 ist die Elektronenkonfiguration des Sauerstoffs wiedergegeben.

![Elektronenkonfiguration des \(\text{O}_2\)-moleküls, nach [27, S.394]](image-url)
Für Sauerstoff im Grundzustand \(^3\text{O}_2 \) sind in diesem Zusammenhang nur 1-Elektronen-Reaktionen mit Radikalen zu erwarten. Da aber im angeregten 1. Singulett-Zustand die Elektronen gepaart vorliegen, sind 2-Elektronen-Reaktionen ähnlich dem Ethen möglich, nur daß Sauerstoff elektrophiler reagiert. Durch Cyclo-Addition (Abb. 29) von Singulett-Sauerstoff an die Doppelbindung der Fettsäure bilden sich Hydroperoxide, welche nach den Schritten 3 und 4 in Abbildung 25 die radikalisch verlaufende Autooxidation einleiten.

![Diagramm von Singulett-Sauerstoff mit allylständigen Doppelbindungen, nach [24, S.76]](image)

![Diagramm von Singulett-O\(_2\) bei der sensibilisierten Photooxidation, nach [24, S.77]](image)
2.4.5 Methoden zur Verlängerung der Haltbarkeitszeit von fetthaltigen Lebensmitteln

Als Maß für die Haltbarkeit wird die Induktionsperiode herangezogen, da die folgenden Reaktionen vergleichsweise schnell ablaufen. Um diesen Abschnitt der Fettoxidation zu verlängern, kommen verschiedene physikalische und chemische Methoden zur Anwendung.

Speiseöle werden in gelben oder braunen Flaschen oder in Blechdosen verkauft. Diese Maßnahme, einmal abgesehen von den vollen Lichtschutz bietenden Blechumhüllungen, beruht auf der unterschiedlichen Lichtempfindlichkeit bei verschiedenen Wellenlängen (Abb.31). Dennoch werden einige fetthaltige Lebensmittel (z.B. Milch) nicht lichtgeschützt verpackt. Der Grund dafür ist sicherlich kosmetischer Natur, aber viele Lebensmittel unterliegen auch einem weitaus schnellerem Verderb anderer Ursache, so daß hier die Fettoxidation kaum eine Rolle spielt.

![Graphik](image)

Abb.31 Sauerstoffaufnahme von Sojaöl bei verschiedenen Wellenlängen [25, S.43]

Die Oxidationsgeschwindigkeit ist in einem weiten Bereich nur wenig vom Sauerstoffpartialdruck abhängig [25, S.44]. Dies ist angesichts der niedrigen Geruchs- und Geschmacks- schwelenwerte der auftretenden Verderbsprodukte verständlich. Erst bei einem wesentlich verminderten Sauerstoffpartialdruck (0 bis 10 mbar) findet eine deutliche Senkung der Reaktionsgeschwindigkeit statt. Dies ist technisch am besten durch eine Schutzgasatmosphäre zu erreichen.

Abb.32 Einfluß von Tocopherol und Ascorbylpalmitat auf die Oxidationsstabilität von Fetten [1, S.203]

Abb.33 Reaktion von Tocopherol mit Peroxyln-Radikalen und Regeneration durch Ascorbylpalmitat [1, S.204]
2.5 Andere Ursachen für einen Sauerstoffverbrauch von Lebensmitteln

Neben allen essentiellen Fettsäuren und Vitamin C sind die Vitamine A und E sowie einige Aminosäuren (Arginin, Histidin Lysin, Methionin) sauerstoffempfindlich.

* Der Sauerstoff muß erst einmal in das Lebensmittel eindringen, so wurden zur Bestimmung der Toleranzgrenzen dünn Schichten von Lebensmitteln eingesetzt, der Sauerstoffverbrauch gemessen und die Verkäuflichkeitsgrenze sensorisch bestimmt [19].

** Telefonische Auskunft des Bundessortenates, Prüfstelle Kurzen
Neben diesen endogenen Ursachen können auch sekundäre Einflüsse wie Mikroorganismen für einen Verbrauch von Sauerstoff verantwortlich sein. Beispielsweise ist halbgebackenes, zum Aufbacken bestimmtes Brot wegen der hohen Oberflächenfeuchtigkeit sehr anfällig gegen Schimmelpilzbefall. Um diesem Umstand Abhilfe zu verschaffen, wird das Brot in einer Schutzgasverpackung aus Verbundmaterial unter CO₂ verpackt. Die Firma Harry-Brot verwendet zwei unterschiedliche Folienverpackungen: Schlauchbeutel und Tiefziehfolien. Der technisch bedingte Restsauerstoffgehalt in der ersten beträgt 0,2 %, in der zweiten 1,2 % und es gibt einen direkten Zusammenhang zwischen Restsauerstoffgehalt und Mindesthaltbarkeitszeit*.

* Telefonische Auskunft der Firma Harry-Brot / Hannover
3. Material und Arbeitstechniken

3.1 Die Sauerstoffmeßgeräte

Die beiden verwendeten Geräte (OXI 92 und 96) der Firma WTW unterscheiden sich weitgehend nur in der Signalverarbeitung, der Aufbau der Sonde (Abb.34) ist identisch. Die Temperaturkorrektur erfolgt über einen in die Elektrode eingebauten Temperaturfühler. Während beim OXI 92 der Luftdruck mit einem mitgelieferten Barometer bestimmt und am Gerät eingestellt werden muß, erfolgt die Druckkorrektur im OXI 96 automatisch über einen eingebauten Druckfühler und es ist eine Salzkorrektur möglich, die am OXI 92 über eine veränderte Eichung erfolgen muß.

Technische Daten [31]
Drift: < 1 digit/24h
Polarisationsspannung: 790 mV ± 10 mV (Dauerpolarisation, auch im ausgeschalteten Zustand)
Ansprechzeit: 90 % des Endwertes nach < 10s (20°C)
99 % des Endwertes nach < 40s (20°C)
Nullstrom: nullstromfrei
Mindestanströmung: 15 cm/s

3.2 Versuchsaufbauten

In Vorversuchen wurden meist Bechergläser oder Erlenmeyerkolben als Messgefäße verwendet. Es stellte sich jedoch schnell heraus, daß der Einfluß der Luft erhebliche Störungen verursachte. Daraufhin wurden mehrere Apparaturen entwickelt, die einen Kontakt der Luft mit der zu messenden Flüssigkeit ausschlossen.

Diese Apparatur diente neben der direkten Messung auch zum Einstellen definierter Sauerstofflösungen, welche dann in Apparatur 2 überführt wurden.

Ein gewisser Nachteil ergibt sich allerdings daraus, daß der Temperatursensor der Meßzelle bei dieser Variante nicht mehr direkt mit der Probe in Kontakt steht. Allerdings sind die daraus resultierenden Fehler als gering einzuschätzen, da (wie Temperaturmessungen zeigten) die Temperatur von Probe und Umgebung nahezu gleich gehalten werden kann.

Apparatur 3, Abb.37: Um direkt nebeneinander polarographisch und photometrisch in ein und derselben Lösung messen zu können, wurde Versuchsapparatur 2 erweitert. Zunächst mußte ein geeignetes Photometer gefunden werden, welches

Abb.37 Apparatur 3

Abschließend wurde dieser Aufbau mit Kaliumpermanganat getestet. Gute Ergebnisse wurden erzielt, wenn direkt nach dem Einspritzen der zweiten Flüssigkeitsportion (in diesem Fall Permanganat-Lösung) ein Magnet über der Kuvette etwa eine Minute hin und her bewegt wurde.

Apparatur 4, Abb.38: Dieser Versuchsaufbau schließlich stellt die Biosensoren für die Bestimmung von Ascorbinsäure und Brenz catechin dar.

Der Sauerstoffgehalt der Probe wurde konstant gehalten, dies geschah durch Einblasen von Luft. Auf der Membranoberfläche der Meßzelle wurde enzymatisches Material so fixiert, daß Sauerstoff und Substrat nur in dieser Region miteinander reagieren können. Der aus dieser enzymatischen Reaktion resultierende Sauerstoffverbrauch kann zur quantitativen Bestimmung des Substrats herangezogen werden.

Biosensor zur Bestimmung von o-Dihydroxyphenolen. Es wurde ein etwa 2 mal 2 cm großes Stück Bananenschale mit der Innenseite nach außen über den Sauerstoffsensor (OXI 92) gestülpt und mittels eines Gummiringes befestigt (Abb.39B). Da die Polyphenoloxidases am Pflanzengewebe gebunden sind, bleiben sie in der Bananenschale lokalisiert. Um eine ausreichende Sauerstoffdiffusion zu gewährleisten, muß die Bananenschale möglichst dünn sein. Deshalb wurden relativ "alte" schon stark gebräunte Bananen verwendet, da hier die Schale etwas dünn ist. Außerdem wurde ein Großteil des anhaftenden Pflanzengewebes mit der stumpfen Seite eines Küchenmessers vorsichtig abgeschabt.

Biosensor zur Bestimmung von Ascorbinsäure. Es diente Salatgurkensaat als enzymatisches Material. Mit diesem Saft befeuchtete Küchenpapierstückchen wurden auf die Membranoberfläche des O₂-Meßgerätes gelegt und mit Einmachhaut (Zellglas, Firma Folia) fixiert (Abb.39A).
Abb.38 Apparatur 4

Abb.39 Aufbau der Biosensoren (A: Ascorbinsäuresensor, B: Sensor zur Bestimmung von o-Dihydroxyphenolen)
Um die enzymhaltigen Präparate möglichst enganliegend auf der CLARK-Meßzelle zu befestigen, mußten in beiden Fällen die kleinen Kunststoffstutzen am Membrankopf (Abb.34) entfernt werden. Die Eichung des O₂-Sensors erfolgte einmal (vor der Modifikation) auf 102%. Aufgrund des höheren Diffusionswiderstandes (nach Aufbringen der Enzymschicht), stellte sich ein geringerer Wert ein. Alle folgenden Eichungen erfolgten auf diesem Wert.

3.3 Arbeitstechniken unter Luftausschluß

3.3.1 Aufarbeitung der Proben:

- Lagerung: Früchte, die nicht sofort nach dem Kauf verarbeitet werden konnten, wurden in einem Kunststoffbeutel mit Kohlendioxid begast, verschlossen und im Kühlschrank aufbewahrt.

Saft durch den Stoff abpressen. In der Gefrierbeuteldecke sammelte sich nun ausreichend Saft für die Messung.

Die Saftentnahme geschah folgendermaßen:

- 60ml-Spritze mit Stickstoff aus dem äußeren Beutel spülen
- Spritze mit Stickstoff aus dem inneren Beutel spülen
- Probe entnehmen
- Kanüle mit Stopfen oder Dreiwegehahn sichern

Diese Technik wurde für alle zu untersuchenden Früchte angewendet. Bei weichen Früchten (z.B. Tomaten) entfiel allerdings die grobe mechanische Zerkleinerung mit dem Hammer.

Für die Bestimmung der Sauerstofflöslichkeit in Fruchtsaft/Wasser-Mischungen wurde sauerstofffreier, vollständig oxidierter Fruchtsaft benötigt.

- Herstellung von sauerstofffreiem ausoxidiertem Fruchtsaft:

 - Frucht ohne Schutzgas pressen
 - Saft 3 Stunden unter Luftinwirkung rühren (Magnetrührer)
 - Saft im siedenden Wasserbad 15 Minuten erhitzen
 - Saft in Apparatur 1 solange unter Rühren mit N₂ gebasen bis die Anzeige des Meßgerätes Null zeigt
 - Saft über Kanüle 1 mittels einer mit Stickstoff gespülten Spritze mit Dreiwegehahn entnehmen
3.3.2 Befüllen der Apparaturen

- **Apparatur 1, Variante 1**: Um den Sauerstoffgehalt der Probe aufzunehmen wurde der Fruchtsaft als erstes eingefüllt und anschließend sauerstoffreiches Wasser aufgefüllt. Die Versuchsapparatur muß vollständig gefüllt sein.

 - Volumenbestimmung und Berechnung des Volumenanteils der Probe für die gewünschte Verdünnung

 - Apparatur mit \(\text{N}_2 \) spülen bis die Anzeige des Meßgerätes den Wert Null anzeigt

 - Einfüllen der Fruchtsaftprobe über Kanüle 1

 - Meßwert notieren

 - Einfüllen von sauerstoffreichem Wasser bis alles Gas aus der Apparatur verdrängt ist. (eventuell Versuchsaufbau schräg halten). gleichzeitig Uhr starten

 - Messung beginnen

Es hat sich gezeigt, daß die Fruchtsäfte nach dem Pressen keinen Sauerstoff enthielten (wahrscheinlich wurden Sauerstoffreste durch Oxidation von Inhaltsstoffen entfernt). Daher kann die Reihenfolge der Zugabe auch umgekehrt geschehen.

- **Apparatur 1, Variante 2**:

 - Volumenbestimmung und Berechnung des Volumenanteils der Probe für die gewünschte Verdünnung

 - Wasser eingfüllen

 - Wasser unter Rühren mit \(\text{O}_2 \) begasen

 - Meßwert aufnehmen

 - Probe einfüllen, Uhr starten, Meßwerte aufnehmen
- **Apparatur 2:**

 - Vorsichtig sauerstoffreiche Lösung über Dreiwegehahn ansaugen (kein Vakuum ziehen)
 - Versuchsaufbau drehen und durch leichtes Klopfen Gasblasen zur Spritzenöffnung bringen
 - Gasreste und überschüssige Flüssigkeit aus der Apparatur drücken bis das gewünschte Volumen erreicht ist
 - Dreiwegehahn verschließen
 - Meßwert aufnehmen
 - Dreiwegehahn mit der Probe spülen, damit keine Luftblasen in die Apparatur gelangen
 - Apparatur über den Dreiwegehahn mittels einer Spritze bis zum gewünschten Endvolumen mit der Probe auffüllen, Uhr starten
 - Messung beginnen

- **Apparatur 3:** (Modellversuch zur Enzymatischen Bräunung)

 - gepufferte Enzymlösung mit O₂ aus der Gasflasche sättigen und in die Apparatur überführen
 - Photometer auf 480 nm einstellen und kalibrieren
 - O₂-Meßwert aufnehmen
 - Substratlösung durch Einleiten von Stickstoff (Apparatur 1) von Sauerstoffresten befreien
 - Hemmstoff einwiegen und in die zur Aufnahme der Substratlösung bestimmten Spritze überführen
 - Spritze über Dreiwegehahn mit N₂ spülen
- Substratlösung aufnehmen, schütteln und N₂-Gasbläschen aus der Spritze drücken
- Dreiwegehahn des Versuchsaufbaus mit Substrat/Hemmstoff-Lösung spülen
- Apparatur bis zum gewünschten Endvolumen mit Substrat/Hemmstoff-Lösung über Dreiwegehahn auffüllen, Uhr starten
- Extinktions- und O₂-Meißwerte aufnehmen

Da einige Saftproben den gelösten Sauerstoff vollständig verbrauchten, wurde versucht den Sauerstoff nachzudosieren. Dies kann auf unterschiedliche Weise geschehen. Einerseits kann direkt Gas nachgeliefert werden, oder es wurde sauerstoffreiches Wasser aufgefüllt, was eine weitere Verdünnung der Probe zur Folge hat.

- Nachdosieren von gelöstem Sauerstoff (unter gleichzeitiger Verdünnung der Probe)
 - Apparatur 1, Variante 2
 - Messung durchführen bis aller Sauerstoff verbraucht ist
 - einen definierten Volumenanteil der Saft-Wasser-Mischung über Kanüle 1 entnehmen
 - sauerstoffreiches Wasser über Kanüle 1 zugeben bis die Apparatur vollständig gefüllt ist
 - gegebenenfalls Vorgang wiederholen

- Nachdosieren von Sauerstoffgas
 - Dreiwegehahn auf Kanüle 1 anbringen
 - Messung durchführen bis aller Sauerstoff verbraucht ist
 - etwas Mischung über den Dreiwegehahn entnehmen, Spritze aufgesteckt lassen
- O₂ aus der Gasflasche über den Dreiwegehahn 30 Sekunden in die restliche Mischung einleiten
- entnommene Mischung wieder zufügen
- Messung fortführen
- gegebenenfalls Vorgang wiederholen

Diese beiden Methoden wurden allerdings nur in Vorversuchen (Abb.40) angewendet, da sie einige Nachteile beinhalten: erstens ist der Sauerstoffverbrauch während des Nachdosierens nicht zu bestimmen und zweitens wird aufgrund der Verdünnung durch sauerstoffreiches Wasser die Reaktionsgeschwindigkeit herabgesetzt; oder ein gewisser Teil der Mischung verläßt (durch das Einleiten von O₂) als Aerosol den Versuchsaufbau, damit entstehen unvermeidlich Gasblasen nach dem Wiederzufügen der entnommenen Mischung, was ein Nachlöschen von Sauerstoff zur Folge haben kann.

Um einen vollständigen Verbrauch zu verhindern, wurden im allgemeinen O₂-gesättigte Lösungen verwendet und mit niedrigeren Saftanteilen gearbeitet.

3.4 Sauerstofflöslichkeit in den verwendeten Medien

Um eine Korrektur vorzunehmen wurde anfangs mit der WINKLER-Methode gearbeitet. Es zeigte sich jedoch schnell, daß Inhaltsstoffe der Probe oder einige zugesetzte Stoffe auch
hier zu unzuverlässigen Werten führten. So wurden in Glucoseselösungen geringere Werte angezeigt, ein Umstand der wahrscheinlich auf einer Oxidation von Glucose durch gelösten Sauerstoff, im teilweise alkalischen Milieu, des WINKLER-

A:
0 min: 26,5 ml Saft + 26,5 ml Wasser (100% O₂)
6 min: 30 ml Saft/Wasser-Mischung entnommen und verworfen
8 min: 30 ml luftgesättigtes Wasser aufgefüllt
40 min: 26 ml Saft/Wasser-Mischung entnommen
45 min: 26 ml luftgesättigtes Wasser aufgefüllt

B:
0 min: 26,5 ml Saft + 26,5 ml luftgesättigtes Wasser
10 min: etwas Mischung entnommen, Sauerstoff eingeleitet, Mischung wieder zugefügt
45 min: etwas Mischung entnommen, Sauerstoff eingeleitet, Mischung wieder zugefügt

Abb. 40 Nachdosieren von Sauerstoff in Saft/Wasser-Mischungen, mit verschiedenen Methoden

<table>
<thead>
<tr>
<th>Wasser vor der Mischung (nach CLARK)</th>
<th>Mischung (1:1) (nach CLARK)</th>
<th>Mischung (1:1) (nach WINKLER)</th>
<th>Mischung (1:1) erwarteter Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saccharose (0,55 mol/l)</td>
<td>10,4</td>
<td>6,0</td>
<td>5,15</td>
</tr>
<tr>
<td></td>
<td>9,9</td>
<td>5,9</td>
<td>4,90</td>
</tr>
<tr>
<td>Glucose (0,55 mol/l)</td>
<td>14,9</td>
<td>8,6</td>
<td>6,50</td>
</tr>
<tr>
<td></td>
<td>9,0</td>
<td>5,0</td>
<td>3,95</td>
</tr>
<tr>
<td>Kochsalz (0,275 mol/l)</td>
<td>9,0</td>
<td>5,0</td>
<td>4,55</td>
</tr>
<tr>
<td></td>
<td>16,3</td>
<td>9,2</td>
<td>8,05</td>
</tr>
</tbody>
</table>

Tab.4 Vergleich der zweier O₂-Bestimmungsmethoden (Konzentrationsangaben in mg/l)

Da Fruchtsäfte ein komplexes Gemisch darstellen, ist also nicht auszuschließen, daß es auch hier bei beiden Methoden zu Fehlern kommen kann. Daher wurde ein anderes Verfahren verwendet, um die Abweichungen, die mit der polarographischen Meßtechnik entstehen, zu korrigieren. Auch hier wurde wieder von O₂-haltigem destilliertem Wasser ausgegangen, welches mit ausoxidiertem, sauerstofffreiem Fruchtsaft gemischt wurde (Apparatur 2). Der Meßwert und der erwartete Wert der Mischung wurden ins Verhältnis gesetzt.
und so ein Korrekturfaktor bestimmt (Tab.5). Das Mischungsverhältnis wurde so gewählt, daß es dem der Messung entsprach. Abbildung 41 zeigt eine typische Messung vor und nach der Korrektur.

<table>
<thead>
<tr>
<th>O₂-Konzentration in dest. Wasser vor der Mischung (nach CLARK)</th>
<th>O₂-Konzentration in der Mischung (3:1), (CLARK)</th>
<th>erwarteter Wert für die Mischung (3:1)</th>
<th>berechneter Korrekturfaktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,4</td>
<td>5,6</td>
<td>4,93</td>
<td>0,88</td>
</tr>
<tr>
<td>7,7</td>
<td>5,4</td>
<td>5,13</td>
<td>0,95</td>
</tr>
<tr>
<td>25,3</td>
<td>19,5</td>
<td>16,87</td>
<td>0,86</td>
</tr>
<tr>
<td>26,3</td>
<td>19,8</td>
<td>17,53</td>
<td>0,89</td>
</tr>
<tr>
<td>15,3</td>
<td>11,3</td>
<td>10,20</td>
<td>0,90</td>
</tr>
</tbody>
</table>

Mittelwert: 0,9

Tab.5 Bestimmung des O₂-Korrekutfaktors für eine Saft-Wasser-Mischung (Golden Delicious 33,3%), Konzentrationsangaben in mg/l

![Diagram](image)

Abb.41 Sauerstoffverbrauch einer Saft-Wasser-Mischung (Golden Delicious 33,3%)

3.5 Sauerstoffverbrauch der Meßzelle

O₂-Konz. (mg/l)

![Diagramm](image)

Abb.42 Sauerstoffverbrauch der Meßzelle bei einem Probevolumen von 20ml (Apparatur 2 mit dest. Wasser)

Um den Sauerstoffverbrauch einer Saft/Wasser-Mischung zu bestimmen muß der Verbrauch der Meßzelle berücksichtigt werden. Da unterschiedliche Volumina zum Einsatz kamen,
wurde der O₂-Verbrauch der Meßzelle in der Regel durch Extrapolation aus der Verbrauchskurve ermittelt. Diese Verfahrensweise ist zwar nicht ganz korrekt, da die Meßelektrode bei größeren O₂-Konzentrationen (wie sie am Anfang der Reaktion vorliegen) auch einen größeren Verbrauch aufweist. Da aber die Oxidation von Fruchtsäften gerade am Anfang relativ schnell verläuft, wird dieser Umstand nicht all zu sehr ins Gewicht fallen.

3.6 Bestimmung des Sauerstoffverbrauchs eines Fruchtsaftes

Um den O₂-Verbrauch eines Fruchtsaftes zu bestimmen, muß die Sauerstofflöslichkeit und der Verbrauch der Meßzelle berücksichtigt werden. Weiterhin muß ein Sauerstoffverbrauch von Mikroorganismen ausgeschlossen werden. Wie später gezeigt wird, ist letzteres durch einen Zusatz von EDTA zu erreichen. Es wurde folgendermaßen vorgegangen:

- Verwendung einer Mischung von sauerstoffgesättigtem Wasser und sauerstofffreiem Fruchtsaft (Apparatur 2)

- Aufnahme der Meßwerte bis die Konzentrationsabnahme des Sauerstoffs einen linearen Verlauf zeigt

- Berechnung des Anfangswertes

- Löslichkeitskorrektur der Meßwerte nach 3.4

- Extrapolation des linearen Anteils der Kurve auf die y-Achse

- Berechnung des Verbrauchs für reinen Saft aus den erhaltenen Werten für die Fruchtsaft-Wasser-Mischung

Die Anwendung dieser Arbeitsweise zeigt Abbildung 43. So ist in diesem Beispiel die Sauerstoffkonzentration der Mischung innerhalb von 10 Stunden von 28,2 mg/l auf 12,3 mg/l gesunken. Die Extrapolation ergibt einen Sauerstoffverbrauch für die Meßzelle von 1,7 mg/l in diesem Zeitraum. Damit ergibt sich für die 33,3%ige Saft/Wasser-Mischung ein Verbrauch von 14,2 mg/l. Der reine Saft würde dementsprechend das Dreifache verbrauchen, also 42,6 mg/l.
3.7 Reagenzien und Geräte

Die meisten eingesetzten Chemikalien hatten Analysequalität. In einigen Fällen mußten die verwendeten Stoffe jedoch erst hergestellt bzw. aufgereinigt werden, und das Ansetzen der Reagenslösungen beschränkte sich nicht immer auf das Einwiegen und einfache Lösungen der Substanz. Daher soll an...
dieser Stelle die Herstellung einiger Reagenzlösungen genauer beschrieben werden.

2.6-Dichlorphenolindophenol-Lösung (1mmol/l)

326 mg (1 mmol) des Natriumsalz-Dihydrats wurden in etwa 100 ml dest. Wasser bei 50°C unter Rühren in einem Becherglas gelöst. Nach dem Abkühlen wurde die Lösung in einen 1000 ml Messkolben überführt und mit dest. Wasser bis zur Marke aufgefüllt und nicht gelöste Substanz abfiltriert. Mit einer Ascorbinsäure-Standardlösung (2000 mg/l) wurde ein Faktor von 0,9 ermittelt.

Die Lösung wurde kühI und dunkel aufbewahrt (Kühlschrank).

Natriummolybdatophosphat-Stammlösung (10 mmol/l)

1,7 g (12 mmol) Molybdänoxid (MoO₃) wurden mit ca. 40 ml dest. Wasser unter Rühren aufgeschwemmt und mit Natriumhydroxid versetzt bis sich alle Substanz gelöst hat. Nun wurden etwa 4 ml konz. Schwefelsäure zugefügt.

In einem 100 ml Messkolben wurden 136 mg (1 mmol) wasserfreies Kaliumdihydrogenphosphat in ca. 40 ml dest. Wasser gelöst, die saure Natriummolybdat-Lösung langsam zugefügt und bis zur Marke mit dest. Wasser aufgefüllt.

Brenzcatechin-Stammlösung (1,5 mmol/l)

Um das technische Produkt von Verunreinigungen (hauptsächlich braune Oxidationsprodukte) zu befreien, wurde in Petroleumbenzin (Siedebereich 100 - 140°C) umkristallisiert. Dabei löst sich das Brenzcatechin in heißem Benzin, während die Verunreinigungen zwar schmelzen aber ungelöst bleiben. Die heiße Lösung wurde abdekaniert und filtriert, beim Abkühlen bilden sich weiße etwa 5 mm lange Nadeln. Diese Substanz wurde an der Luft getrocknet und unter Stickstoff aufbewahrt.

165 mg (1,5 mmol) so vorbereitetes Brenzcatechin wurde in 1 l sauerstoff-freiem dest. Wasser gelöst (Messkolben). Die Entnahme der Lösung geschah dann immer unter Stickstoff (Abb. 44).

Abb.44 Entnahme unter N₂-Begasung
Dopamin-Stammlösung (1,5 mmol/l)

Zur Herstellung der Lösung wurde eine 5 ml Ampulle Infusionslösungs konzentrat (Firma Giulini) verwendet, diese enthält 50 mg (52,8 mmol/l) 4-(2-Aminoethy1)benzocatechin-hydrochlorid (Dopaminhydrochlorid, Abb.45) und 9,15 mg (9,6 mmol/l) Natriumdisulfit als Stabilisator.

5 ml dieser Lösung wurden in 171 ml dest. Wasser aufgenommen und sofort verwendet. Die Dopamin-Konzentration dieser Stammlösung beträgt 1,5 mmol/l, die Natriumdisulfit-Konzentration etwa 0,3 mmol/l.

Polyphenoloxidase-Lösung (10 mg/l)

Da der Vorrat an PPO (Tyrosinase aus Pilzen, Sigma) begrenzt war (insgesamt 12 mg Feststoff), wurden nur sehr geringe Mengen eingewogen und kleine Volumina angesetzt.

1 mg Tyrosinase wurden in einem 20 ml Becherglas eingewogen, unter Nachspülen dieses Gefäßes in einen 100 ml Meßkolben überführt und bis zur Marke mit dest. Wasser aufgefüllt. Diese Lösung (im Kühlschrank gelagert) ist etwa 3 - 4 Tage verwendbar.

Phosphatpuffer-Lösung (0,1 mol/l)

8,9 g (0,05 mol) Na₂HPO₄ · 2H₂O und 6,8 g (0,05 mol) wasserfreies KH₂PO₄ wurden in einem Liter dest. Wasser gelöst und der pH-Wert bestimmt (pH 6,88).

3.8 Lebensmittel

Folgende Fertigprodukte wurden untersucht:

- "Wertkost" Klarer Apfelsaft mit Vitamin C angereichert (30 mg/100 ml zum Zeitpunkt der Abfüllung), EUCO Hamburg
- "albi" Tomatensaft aus Konzentrat (gesalzen), albi Bühlenhausen
- "hohes C" Orangensaft aus Konzentrat mit Calcium und Milcheiweiß (Vitamin C: 38 mg/100 ml, Calcium: 135 mg/100 ml), Eckes-Granini Nieder-Olm
- "Wertkost" schwarzer Johannisbeernektar (Fruchtgehalt: 34%), EUCO Hamburg
- "Vitraletten Orange mit Calcium" Vitamin-Lutschbonbons, Beckerwerk Fulda GmbH, Zutaten: Traubenzucker, Calciumsalz mindestens 4 g in 100 g (Trennmittel E341*), Citronensäure, Stärke, Vitamin C 500 mg in 100 g, Vitamin B₁-nitrat 8,8 mg in 100 g, Orangenaroma

* E 341a = Ca₃PO₄, E 341b = Dicalciumorthophosphat, E341c = Ca₅(PO₄)₂OER (34, S. 86)
4. Ergebnisse und Diskussion

Exkurs: Auswahl der Äpfel

Hierfür wurden die Äpfel zunächst einfach aufgeschnitten und sich selbst überlassen (Abb. 46). Boskoop zeigte hier die stärkste und Granny Smith die schwächste Bräunung. In ganz ähnlicher Weise wird nach einer sogenannten Boniturskala der
UPOV-Prüfungsrichtlinie TG/14/1 im Bundessortenamt verfahren. Das Bräunungsverhalten wird als eines von vielen Sortenkennzeichen* bestimmt (Abb.47), die Einstufung (Bonitur) erfolgt hier ebenfalls visuell, nach dem Durchschneiden mit einem Edelstahlmesser durch Vergleich mit dem Sortiment.

Abb.46 Bräunung verschiedener Äpfel nach 60 Minuten

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Golden Delicious</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Gala Royal</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Jona Gold</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Boskoop</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Cox Orange</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Boniturskala:
1 fehlend oder sehr gering
3 gering
5 mittel
7 stark
9 sehr stark

Abb.47 Bonitursdaten der Frucht fleischbräunung 1992 - 1994

* Telephonat und Schriftwechsel mit dem Bundessortenamt, Prüfstelle Würse. Die Fruchtfleischbräunung gilt dort als relativ unzuverlässiges Sortenkennzeichen, wird aber aufgrund der Prüfungsrichtlinien mitbestimmt.
Für Boskoop, Cox Orange, Golden Delicious und Gala Royal wurde ein mittlerer Sauerstoffverbrauch bestimmt. Dafür wurden jeweils drei Verbrauchskurven (ein Apfel pro Kurve), bei erhöhtem Sauerstoffangebot (Verwendung von O₂-gesättigtem Wasser bei einem Saftanteil von 33,3 %) aufgenommen und gemittelt. Lediglich bei Boskoop wurde der angebotene Sauerstoff nach etwa 90 min vollständig verbraucht, daher müßte der Wert für diese Sorte höher liegen. Mit Apparatur 1 nach Variante 2 wurden folgende Werte für den mittleren O₂-Verbrauch erhalten (in mg O₂/l reinem Saft): Gala Royal 34, Golden Delicious 42, Cox Orange 62 und Boskoop 63. Diese Werte sind als Richtwerte zu verstehen, da hier keine Korrektur der Meßwerte für die O₂-Konzentration in der Mischung vorgenommen wurde und damit der Anfangs- und
Endpunkt der Messung nicht korrekt bestimmt werden konnte. Für Golden Delicious wurde eine solche Korrektur vorgenommen und ein Verbrauchswert von 42,6 mg/l bestimmt (Abb.43).

Für die meisten Experimente hat sich die Verwendung der Apfelsorte Golden Delicious bewährt. Der Apfel lieferte mit der angewendeten Pressmethode etwa 50 - 60 ml Saft, ist fast das ganze Jahr über in etwa gleichbleibender Qualität im Handel zu erhalten und zeigt einen mittleren

<table>
<thead>
<tr>
<th>Boskoop</th>
<th>Boskoop</th>
<th>Boskoop</th>
<th>Boskoop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jona Gold</td>
<td>Jona Gold</td>
<td>Golden Delicious</td>
<td>Golden Delicious</td>
</tr>
<tr>
<td>Cox Orange</td>
<td>Golden Delicious</td>
<td>Cox Orange</td>
<td>Golden Delicious</td>
</tr>
<tr>
<td>Golden Delicious</td>
<td>Cox Orange</td>
<td>Golden Delicious</td>
<td>Cox Orange</td>
</tr>
<tr>
<td>Gala Royal</td>
<td>Gala Royal</td>
<td>Gala Royal</td>
<td>Gala Royal</td>
</tr>
<tr>
<td>Granny Smith</td>
<td>Granny Smith</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zunahme der Reaktivität visueller Vergleich Sauerstoffverbrauchsverbrauchs geschwindigkeit mittlerer Sauerstoffverbrauch Bonitur (Bundessortenamt)

Abb.49 Reihenfolge der Reaktivität verschiedener Apfelsorten
Sauerstoffverbrauch. Während sich die Trübstoffe bei diesem Apfel durch Zentrifugieren nur sehr unzureichend entfernen ließen, gelang dies recht gut bei Verwendung der Sorte Boskoop.

4.1 Sauerstoffverbrauch von Apfelsaft

Am Beispiel der Herstellung von Apfelsaft wurde der Ablauf der enzymatischen Bräunung näher untersucht.

4.1.1 Zusammenhang zwischen Bräunung und Sauerstoffverbrauch

Für die Messung der Bräunung bietet sich eine photometrische Arbeitsweise an. Ausgehend von der Annahme, daß die Enzyme, die für die Bräunung von Apfelsaft verantwortlich sind, an Trübstoffe gebunden sind, muß die Reaktion in einem Trübsaft stattfinden, die photometrische Messung kann jedoch nur in klaren Lösungen geschehen.

Abb. 50 Bräunung einer Apfelsaft/Wasser-Mischung (Boskoop 35%)
A: Nach Erhitzen B: Nach Zentrifugation der erhitzen Mischung
Abb. 52 Zusammenhang zwischen Sauerstoffverbrauch und Bräunung einer Saft/Wasser-Mischung (Boskoop 35%)

Abb. 51 Absorptionsspektrum von oxidiertem Apfelsaft, gemessen gegen wenig oxidierten Apfelsaft (Mischung 1:3, Boskoop erhitzt und zentrifugiert)
Daher wurde der Saft (Boskoop) in Apparatur 2 mit O₂-gesättigtem Wasser gemischt und die Abnahme der Sauерstoffkonzentration aufgenommen. In bestimmten Zeitabständen wurden nun Proben entnommen und sofort im siedenden Wasserbad 2 Minuten erhitzen (Zerstörung der Enzyme). Die so behandelten Proben wurden in Eis aufbewahrt und eine Stunde bei 2000 Upm zentrifugiert (Abb.50).

O₂-Verbrauch

![Diagramm](image)

Lineare Regression:

\[y = 40,9x - 10,7 \]

Bestimmtheitsmaß: 0,97243
Korrelationskoeff.: 0,98612
Standardabweichung: 1,40435

Abb.53 Korrelation der Bräunung mit dem Sauерstoffverbrauch (Boskoop 35%)
4.1.2 Beziehung zwischen Verbrauchsgeschwindigkeit und Sauerstoffkonzentration

Für den Ablauf der enzymatischen Bräunung sind (neben einem Enzym) Sauerstoff und mindestens ein Substrat notwendig. Daher wird die Reaktionsgeschwindigkeit also auch von mindestens zwei Ausgangsstoffen abhängen. Die Konzentration eines Ausgangsstoffes kann jedoch so hoch gewählt werden, daß hauptsächlich die Konzentration der anderen Komponente geschwindigkeitsbestimmend wirkt.

Da Sauerstoff sowohl als Messgröße aufgenommen wird, als auch gleichzeitig als Substrat für die Reaktion dient, ist es sinnvoll, eine Sättigungskonzentration (für Sauerstoff) des Enzmys zu bestimmen. So können dann alle Messungen an einer Apfelsorte, wenn die Sauerstoffkonzentration während der Messung immer über diesem Wert liegt, als nahezu sauerstoffunabhängig angesehen werden.

Hierbei interessierte weniger die MICHAELIS-Konstante (Km-Wert) für Sauerstoff, sondern vielmehr die Konzentration, oberhalb derer ihre Änderung einen vernachlässigbar geringen Einfluß auf die Reaktionsgeschwindigkeit ausübt.

Ein Km-Wert, im enzymkinetischen Sinne, bezieht sich auf ein definiertes Substrat und ein definiertes Enzym. Er gibt die Konzentration des Substrates an, bei der die Reaktionsgeschwindigkeit die halbe Maximalgeschwindigkeit ausmacht.

Da nun aber in Apfelsaft mehrere Substrate, mehrere Enzyme und verschiedene Nebenreaktionen an einer Oxidationsreaktion beteiligt sind, kann auch ein solcher Km-Wert nur den gesamten Vorgang wiedergeben.

Zunächst wurde die Sauerstoffkonzentration mit Apparatur 1 durch unterschiedlich lange Begasung mit Sauerstoff oder
Stickstoff eingestellt und in Apparatur 2 überführt. Danach erfolgte die Aufnahme der Änderung der Sauerstoffkonzentration in der Saft/Wasser-Mischung in halbminütigen Abständen (Abb. 54).

Abb. 54 Reaktionsgeschwindigkeit einer Saft/Wasser-Mischung (Golden Delicious, 33,3%) bei unterschiedlichen Sauerstoff-Anfangskonzentrationen

abgelesene Meßwerte multipliziert mit Korrekturfaktor 0,9
(vgl. 3.4)
Werden die daraus berechneten Anfangsgeschwindigkeiten gegen die Sauerstoffanfangskonzentration aufgetragen (Abb. 55), so wird deutlich, daß sich die Reaktionsgeschwindigkeit ab einer Konzentration über 10 mg/l nur noch wenig steigern läßt.

Bei einer Sauerstofflöslichkeit von 44 mg/l (Raumtemperatur und Normaldruck) läßt sich für eine 33%ige Saft/Wasser-Mischung maximal eine Konzentration von 29,3 mg/l erreichen. Somit bleibt ein Spielraum von 19,3 mg/l, ohne den Bereich der Sauerstoffsättigung des Enzyms zu verlassen. Der mittlere O₂-Verbrauch für eine Apfelsaft/Wasser-Mischung der Sorte Golden Delicious liegt bei etwa 14 mg/l. Damit können Geschwindigkeitsmessungen (Verwendung von O₂-gesättigtem Wasser vorausgesetzt) als weitgehend sauerstoffunabhängig eingestuft werden.

Abb. 55 Abhängigkeit der Reaktionsgeschwindigkeit von der Sauerstoff-Anfangskonzentration (Golden Delicious, 33,3%)
Werden die reziproken Werte für die Geschwindigkeit und die Sauerstoffanfangskonzentration gegeneinander aufgetragen (LINEWEAVER-BURK-Plot), so ergibt sich eine Gerade, aus der sich die Maximalgeschwindigkeit V_{max} und ein Km-Wert (mit den bereits erwähnten Einschränkungen) bestimmen lassen (Abb. 56).

Abb. 56 LINEWEAVER-BURG-Plot zur Bestimmung der MICHAELIS-Konstanten für O_2 (Golden Delicious, 33,3%)
4.1.3 Einfluß von Inhibitoren und Temperatureffekten

Da eine Beinflussung durch die Sauerstoffanfangskonzentration ausgeschlossen werden konnte und die Substratzusammensetzung im Apfel die gleiche bleibt, kann die Wirkung von Zusatzstoffen und anderen Einflüssen auf die Reaktionsgeschwindigkeit in vergleichender Weise untersucht werden (Abb. 57). Aus dem gleichen Grund war es möglich, aufgrund der besseren Übersicht die Differenz-Werte (Verbrauch) gegen die Zeit aufzutragen.

![Diagramm](image)

Abb. 57 Sauerstoffverbrauch von Saft/Wasser-Mischungen (Golden Delicious, 33%) bei Verwendung verschiedener Zusatzstoffe
Durch einfaches Erhitzen des Saftes kam es zu einer deutlichen Abnahme der Reaktionsgeschwindigkeit. Dies stützt die vorweggenommene Annahme für die Existenz eines für die Bräunung verantwortlichen Enzmys. Aufgrund der Überlegung, Komplexbildner könnten die Verbindung zwischen Kupfer und Proteinkomponente im Enzym lösen und damit selektiv Polyphenoloxidase zerstören, wurden EDTA und DDTC* eingesetzt.

Daß EDTA keine Inhibition von PPO zeigt, könnte zwei Ursachen haben: zum einen wäre es möglich, daß eine sterische Hinderung vorliegt, also ein EDTA-Molekül zu groß ist um bis ins aktive Zentrum des Enzymz vorzudringen; zum anderen könnte die Stabilität des Histidin-Kupfer-Komplexes einfach größer sein, als die des EDTA.

Benzoesäure zeigt ebenfalls Hemmwirkung auf die Oxidation von Apfelsaftinhaltstoffen. Da die Struktur von Benzoësäure eine gewisse Ähnlichkeit mit der von Phenolen aufweist, ist eine Konkurrenz- bzw. Verdrängungsreaktion am Enzym möglich. Da jedoch die Carboxylgruppe der Benzoësäure nicht weiter

* Strukturformel Abb.33
oxidiert werden kann, wird die enzymatische Bräunung gehemmt.

Neben der Zerstörung von PPO durch Erhitzen kann auch das Tiefgefrieren zu einer Verlangsamung der Reaktion führen (Abb. 58). Da für die Apfelsorte "Jona Gold" keine Korrekturfaktorbestimmung für die Sauerstoff-Gehalt vorgenommen wurde, sind hier lediglich die vom Gerät angezeigten Konzentrationsänderungen mit der Zeit wiedergegeben.

Abb. 58 Einfluß des Tiefgefriersens auf die Oxidationsgeschwindigkeit (Jona Gold 40%)

Für die Messung wurde ein Apfel unter Stickstoff eingefroren und nach dem Auftauen gepresst. Damit entstehen Eiskristalle, die eine vollständige Zerstörung der Zellen verursachen. Der so erhaltene Saft zeigte keinerlei Braunfärbung und war weniger trüb als herkömmlich gewonnener Saft. Außerdem ließ er sich nicht so gut pressen. Es war ein Phänomen zu beobachten, welches schon in Abschnitt 2.2.6 beschrieben wurde: die Bildung einer schleimigen Pulpe. Das war wahrscheinlich der Grund, warum Trübstoffe zurückgehalten wurden. Damit ergibt sich die Erklärung für die langsameren
Reaktion: der Gehalt von PPO – an Trubpartikel gebunden – war in den so behandelten Saft geringer.

Antioxidativ wirkende Inhibitoren (Ascorbinsäure und Natriumsulfit) lassen sich nach dieser Methode nicht untersuchen, da sie selbst Sauerstoff verbrauchen.

4.1.4 Gehaltsabschätzung von PPO in Apfelsaft mit Hilfe von Natriumdiethylcarbaminat (DDTC)

Da EDTA auch in relativen Dosierungen keinerlei Wechselwirkungen mit PPO zeigt, ergaben sich neue Möglichkeiten der Versuchs durchführung. So kann DDTC gezielt zur Bestimmung des Enzymgehaltes, es bildet sich Cu(DDTC)₂⁻ (Abb. 59), herangezogen werden, während EDTA als Maskierungsmittel für andere anwesende Metallionen dient (Abb. 60).

![DDTC-Komplex](image)

Abb. 59 DDTC-Kupfer-Komplex

Abb. 60 Inhibition von PPO durch DDTC in verschiedenen Konzentrationen (Golden Delicious 33,3%)
Ausgehend von Literaturwerten [38] beträgt der Gehalt an Kationen in 50 g Apfelsaft etwa 1,7 mmol. 50 ml des unter Sauerstoffausschuß gepressten Apfelsaftes wurden daher mit 0,75 g (etwa 2mmol) EDTA versetzt. Dieser so vorbereitete Apfelsaft wurde nun mit luftgesättigten DDTC-Lösungen unterschiedlicher Konzentration vermischt (Apparatur 2).

4.1.5 Einfluß von Mikroorganismen

Vorab sei darauf hingewiesen, daß Mikroorganismen nicht direkt nachgewiesen wurden. Der zeitliche Verlauf der O₂-Verbrauchsgeschwindigkeit und die Effektivität eines antimikrobiell wirksamen Stoffes lassen jedoch den Schluß zu, daß Mikroorganismen bei Langzeitmessungen (10 Stunden) einen erheblichen Anteil am Sauerstoffverbrauch einer Saft/Wasser-Mischung haben können und damit eine Störung der Messung bewirken.

Befinden sich einige Mikroorganismen in einem geeigneten Nährmedium, so findet nach einer gewissen Zeit eine Zellvermehrung statt. Unter optimalen Bedingungen tritt exponentielles Wachstum auf. Benötigen nun die Mikroorganismen Sauerstoff, so muß auch der Sauerstoffverbrauch exponentiell zunehmen.

Bei Apfelsaft findet nun eine Überlagerung zweier O₂-Verbrauchsursachen statt: anfangs überwiegt die Oxidation von Phenolen unter Mitwirkung von PPO (die Verbrauchsgeschwindigkeit nimmt mit der Zeit ab), zu einem späteren Zeitpunkt wird der Einfluß von sauerstoffverbrauchenden Mikroorganismen deutlich (es kommt zu einer Beschleunigung der Verbrauchsgeschwindigkeit).

Um Störungen durch Mikroorganismen auszuschließen, mußte eine Möglichkeit gefunden werden diese zu hemmen, ohne die
Wirkung von PPO zu beeinflussen. Konventionelle Konserverungsmittel wie Benzoesäure oder Sorbinsäure sind somit unbrauchbar (vgl. 4.1.3 und 2.2.6).

Abb. 61 Einfluß von Mikroorganismen auf den Sauerstoffverbrauch von Saft/Wasser-Mischungen (Golden Delicious 33,3%)
4.2 Einfluß von Antioxidationsmitteln im Modellversuch

In den so erhaltenen klaren Lösungen ist neben der polarographischen Sauerstoffmessung auch eine photometrische Verfolgung der Reaktion möglich. Außerdem läßt sich durch genaue Einwaage des Substrates der Sauerstoffverbrauch im Voraus berechnen. Durch die parallele Messung von Sauerstoffverbrauch und Bräunung konnten so auch die Folgereaktionen (Inhibitorwirkung und Polymerisation) untersucht werden. Da mit definierten Lösungen gearbeitet wurde, fielen die bei Obststäften üblichen Schwankungen weg.

Rein visuell ist schon kurz nach der Enzymzusatz eine Gelbfärbung zu erkennen, welche sich vertieft später braun wird, aber spätestens am nächsten Tag ist die Lösung wieder fast farblos.

Die Oxidation von Brenzocatechin verläuft über o-Benzochinon (Primärprodukt), welches im sichtbaren Spektrum im kurzwelligem Bereich Licht absorbiert und so zur gelben Farbe der Lösung führt. Das Absorptionsmaximum liegt im UV-nahen Bereich bei ca. 400 nm. Zu einem späteren Zeitpunkt nimmt die Extinktion jedoch in diesem Bereich ab. Der Anstieg bei 292,5 nm läßt sich als eine Zunahme von Polymeren (Sekundärprodukte) interpretieren (Abb. 62).

Es läßt sich keine Wellenlänge angeben welche den Reaktionsverlauf vollständig charakterisiert (Abb. 63). Zumal der Extinktionsverlauf von der Reaktionsgeschwindigkeit der Primärreaktion abhängt, welche in diesem Fall sicherlich durch unterschiedliche Sauerstoffkonzentrationen variiert.

Da die Sekundärreaktionen jedoch sauerstoffunabhängig eingeleitet werden (Abb. 11), aber die Reaktionsgeschwindigkeit von der o-Benzochinon-Konzentration aus der Primärreaktion abhängt, ergibt sich ein variables Konzentrationsverhältnis von o-Benzochinon und Polymeri-
Abb. 62 Absorptionsspektren für die Reaktion PPO / Brenzocatechin (zeitlicher Verlauf)

Konzentrationen in der Mischung:
Brenzocatechin: 1,25 mmol/l
Tyrosinase: 1,66 mg/l
Sauerstoff wurde durch Schütteln in Lösung gebracht

Temp.: 20 °C

Abb. 63 Enzymatische Oxidation von Brenzocatechin durch PPO (Extinktion bei drei Wellenlängen)
sationsprodukten. Dieses kommt durch den unterschiedlichen Kurvenverlauf bei 400nm und 292,5nm zum Ausdruck.

Abb.64 Absorptionsspektrum von Ascorbinsäure

Konzentrationen in der Mischung:
Brenzatechin: 0,5 mmol/l
Ascorbinsäure: 0,5 mmol/l
Natriumsulfit: 0,5 mmol/l
Phosphatpuffer: 0,066 mol/l
Tyrosinase: 3,3 mg/l

Temp.: 20°C
pH: 6,8

abgelesene Meßwerte multipliziert mit Korrekturfaktor 0,91
(vgl. 3.4)

Abb.65 Enzymatische Oxidation von Brenzatechin
(Inhibition von Polyphenoloxidase)

Beide Substanzen beschleunigen den Sauerstoffverbrauch und
würden bei ausreichender Zugabe den Sauerstoff komplett aus
der Lösung entfernen. Damit könnte dann auch keine
enzymatische Oxidation mehr stattfinden. Weiterhin werden
die gebildeten Chinone wieder zu den Ausgangssubstanzen
reduziert. Sowohl Ascorbinsäure als auch Sulfit verhindern
die Bräunung komplett. Erst nachdem sie verbraucht sind, ist
eine Zunahme von Chinonen photometrisch zu messen.

Abb. 66 Korrelation von Sauerstoffverbrauch und Extinktion mit verschiedenen Inhibitoren.
Auch wenn dieser Sachverhalt in diesem Zusammenhang ungeklärt bleibt, so wird doch einiges über die Wirkungsweise dieser beiden Bräunungs-Inhibitoren deutlich.

Abb. 67 Spontanoxidation von Ascorbinsäure (0,5 mmol/l)

4.3 Sauerstoffverbrauch von Tomatensaft

Auch bei frisch gepresstem Tomatensaft ist eine Abnahme des angebotenen Sauerstoffs zu messen, er zeigt aber ein anderes Verhalten als Apfelsaft. Zum einen ist auffällig, daß mit dem Sauerstoffverbrauch keine feststellbare Intensivierung der Färbung auftritt, zum anderen weist der Kurvenverlauf nicht auf eine Beteiligung von Enzymen hin.

Die Bestimmung von Ascorbinsäure mit DCPIP zu unterschiedlichen Zeitpunkten der Sauerstoffmessung (Probeentnahme aus Apparatur 2) deutet auf einen O₂-Verbrauch aufgrund einer Spontanoxidation von anwesendem Vitamin C hin (Abb.68).

Abb.68 Sauerstoffverbrauch einer Saft/Wasser-Mischung (Fleischtomate)
Allerdings verhält es sich mit der Stöchiometrie hier anders als bei der Hemmung der enzymatischen Bräunung durch Ascorbinsäure. Im Modellversuch (4.2) wurden 2 Mole Ascorbinsäure durch 1 Mole Sauerstoff über das Enzymsystem PPO/Brenzcatechin oxidiert, während bei Tomatensaft ein molares Verhältnis von 1 : 1 zu beobachten ist.

Abb. 69 Oxidation von Ascorbinsäure

Damit kann der Sauerstoffverbrauch von Tomatensaft auf eine nichtenzymatische Oxidation von Ascorbinsäure zurückgeführt werden.
4.4 Sauerstoffverbrauch von Salatgurkensaft

So zeigt unter Sauerstoffausschluß gepreßter Gurkensaft gegenüber Tomatensaft eine beschleunigte Oxidation. Zugesetzte Ascorbinsäure wird schneller umgesetzt als dies ohne Anwesenheit von Gurkensaft geschieht. Leider konnte Ascorbinsäure, aufgrund der Schnelligkeit mit der die Reaktion abläuft, nicht titrimetrisch erfaßt werden.

EDTA zeigt auch hier keine Wirkung auf die Reaktionsgeschwindigkeit (Abb.71). Somit wird auch bei Zusatz von EDTA, wie dies bei Tomatensaft geschah, eine Anwesenheit von Ascorbatoxidase nicht unbemerkt bleiben.

<table>
<thead>
<tr>
<th>Minuten</th>
<th>O₂-Konz. (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
</tr>
</tbody>
</table>

* 10 mg in 5 ml zu 21 ml Saft/Wasser-Mischung zugesetzt
△ 2,18 mmol/l Mischung

Abb.70 Sauerstoffverbrauch einer Saft/Wasser-Mischung (Salatgurke 33,3%)
Abb. 71 Sauerstoffverbrauch von Saft/Wasser-Mischungen (Gurke)

4.5 Zwei Biosensoren

diesem Prinzip arbeitende Sensoren zur Bestimmung von o-Dihydroxyphenolen und Ascorbinsäure vorgestellt.

4.5.1 Die "Bananatode"

SIDWELL und RECHNITZ verwendeten als Basis die Clark-Elektrode in Verbindung mit einer dünnen Bananenscheibe, welche mit einer Dialysemembran auf der Membran der Meßzelle fixiert wird. Da das Enzymsystem PPO hier immobilisiert ist, kann man anhand des angezeigten Sauerstoffmesswertes die Konzentration von Dopamin oder anderer geeigneter Phenole bestimmen.

Der Nachbau dieses Biosensors gestaltete sich als schwierig, da die Scheiben der Banane nicht in der gewünschten Dicke (0,75 mm) geschnitten werden konnten und, weil die vorhandene Dialysemembran oder handelsübliche Einmachhaut in Verbindung mit dem Bananenfruchtfleischgewebe eine zu große Barriere für Substrat und Sauerstoff darstellten. In reinem luftgesättigtem Wasser wurden so Sättigungswerte von etwa 3% gemessen.

Nach der Vorbereitung verblieb der Sensor einen Tag in luftgesättigter Phosphatpufferlösung (0,1 mol/l, pH = 6,88). Diese Zeitperiode ist notwendig, damit alle pflanzeneigenen phenolischen Inhaltsstoffe der Bananenschale vollständig umgesetzt werden. Danach ist der Biosensor etwa 3-4 Tage einsatzfähig. Die Substrate wurden in destilliertem Wasser gelöst. Der Meßbereich liegt im Bereich von etwa 0,05 - 0,5 mmol/l für gelöstes Brenzcatechin bzw. Dopamin. Die unterschiedlichen Konzentrationen der Probösungen wurden durch Verdünnung einer 1,5 millimolaren Stammlösung hergestellt. Anwesende Ascorbinsäure stört die Messung erheblich, da
umgesetztes Substrat, welches sich in der Bananenschale anreichert, wieder zu oxidierbaren Stoffen umgewandelt wird. Weiterhin wäre es möglich, daß andere in der Banane vorkommende Enzyme (Ascorbat oxidase?) direkt die Ascorbinsäure oxidieren und damit den Meßwert verfälschen.

Es zeigte sich, daß die "Bananatrophe" in dieser Form nicht besonders stabil war. Während die Reaktion des Biosensors am 1. Tag noch weitgehend linear verlief, war sie an den darauffolgenden Tagen charakteristisch verändert (Abb.73).
Abb. 72 Typische Reaktion des Biosensors

Abb. 73 Haltbarkeit des Biosensors

In Vorversuchen war eine irreversible Empfindlichkeitserniedrigung nach Kontakt mit Brenzatechelinlösungen hoher Konzentration zu beobachten. Der Grund dafür ist mit größerer Wahrscheinlichkeit eine Gerbung der Proteinkomponente des Enzyms durch die Reaktionsprodukte. Es ist daher anzunehmen, daß dieser Gerbungseffekt sich auch bei Messungen mit niedrigen Konzentrationen (0.1-0.5 mmol/l) auswirkt.

4.5.2 Ein Biosensor für Ascorbinsäure auf der Basis von Gurkensaft

Wie in Abschnitt 4.3 gezeigt werden konnte, enthalten Salatgurken das Enzym Ascorbat oxidase. Es lag nahe, auch dieses System auf seine Tauglichkeit zur quantitativen Bestimmung von Vitamin C zu prüfen. Da für die Bestimmung von Ascorbinsäure mehrere Verfahren vorliegen, bietet sich ein Vergleich mehrerer Methoden an. Neben dem Biosensor (Abb.74) wurden eine photometrische und eine massanalytische Bestimmung von Ascorbinsäure angewendet.Alle Methoden basieren auf Redoxvorgängen und beinhalten damit die unter 2.1.4 beschriebenen Fehlerquellen. Der Vorteil besteht allerdings darin,
daß sie einfach und schnell durchzuführen sind und bei Nichtanwesenheit störender Stoffe gute Ergebnisse liefern. Die Chemie und die Herstellung, der zum Verfahren benötigten Lösungen, wurden bereits in den vorangegangenen Abschnitten ausführlich behandelt.

Ausgehend von einer frisch angesetzten Vitamin C-Stammlösung (2000 mg/l) wurde eine Verdünnungsreihe (76, 181, 245, 333 und 571 mg/l) hergestellt. Das Probevolumen betrug jeweils 60 - 80 ml. Davon wurden 2 ml für die Photometrie, zwei mal 1 ml für die Titration und der Rest für den Biosensor verwendet. Zur Bestimmung des Blindwertes wurde destilliertes Wasser benutzt.

Bestimmung mit Molybdatophosphat. Durch Ascorbinsäure zu Molybdänblau reduzierte Natriummolybdatophosphat-Lösung zeigt ein Extinktionsmaximum bei etwa 720 nm (Abb.75).

![Absorptionsspektrum von Molybdänblau](image)
Die Molybdatophosphat-Stammlösung wurde 1:1 verdünnt und davon 5 ml mit 2 ml Probe versetzt und nach ca. zwei Minuten die Extinktion gegen den Blindwert (2 ml destilliertes Wasser + 5 ml Molybdatophosphat-Lösung) gemessen. Wie Abbildung 76 zeigt, ergibt sich ein linearer Zusammenhang zwischen Ascorbinsäurekonzentration und Extinktion.

Extinktion (bei 720nm)

<table>
<thead>
<tr>
<th>Ascorbinsäurekonzentration (mg/l)</th>
<th>Extinktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2,5</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>200</td>
<td>1,5</td>
</tr>
<tr>
<td>300</td>
<td>1</td>
</tr>
<tr>
<td>400</td>
<td>0,5</td>
</tr>
<tr>
<td>500</td>
<td>0</td>
</tr>
</tbody>
</table>

Lineare Regression:

\[y = 0,0039779x - 0,025 \]

Bestimmtheitsmaß: 0,99932
Korrelationskoeff.: 0,99966
Standardabweichung: 0,02359

Abb. 76 Kalibriergerade für Photometrische Ascorbinsäurebestimmung mit Natrium molybdatophosphat

Methode nach TILLMANN. Normalerweise wird bei der maßanalytischen Messmethode nach TILLMANN die Ascorbinsäurekonzentration direkt aus dem Verbrauch an 2,6-Dichlorphenolindo-phenol-Lösung (DCPIP), nach einer Titerbestimmung, ermit-
teilt. Der Titer wird dann aus dem Verbrauch an DCPIP-Lösung \((a) \) für eine Ascorbinsäurestandardlösung, nach Abzug des Verbrauchs für den Blindwert \((b) \) und dem Gehalt an Vitamin C \((x) \), der zugesetzten AS-Standardlösung nach Gleichung 12 berechnet.

\[
P \text{(DCPIP)} = \frac{x}{(a - b)} = \frac{\text{mg AS}}{\text{ml DCPIP}}
\]

In diesem Fall wurde jedoch der Verbrauch für die unterschiedlichen Ascorbinsäurelösungen der Verdünnungsreihe gegen die Konzentration aufgetragen (Abb.77) und die Konzentration einer Probe aus der Geradengleichung bestimmt.

Die Titration wurde für jede Probe doppelt durchgeführt und gemittelt.

Abb.77 Maßanalytische Ascorbinsäurebestimmung mit 2,6-Dichlorophenolindophenol

Abb.78 Biosensor für Ascorbinsäure (Kalibriergerade)
Da alle drei Methoden für reine Ascorbinsäurelösungen gute Ergebnisse lieferten, wurden nun Vitamin C-Bestimmungen an einer Auswahl von Lebensmitteln durchgeführt. Es handelte sich dabei um handelsübliche Fruchtsäfte und in einem Fall um Vitaminlutschbonbons, die hauptsächlich aus Traubenzucker bestanden. Die Ergebnisse dieser Messung sind in Tabelle 6 wiedergegeben. Es zeigten sich starke Abweichungen zwischen den einzelnen Testmethoden.

<table>
<thead>
<tr>
<th>Produkt</th>
<th>Photometrie</th>
<th>Titration</th>
<th>Biosensor</th>
<th>Packungs- aufdruck bzw. Literaturwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitraletten (Vitaminbonbons)</td>
<td>558 mg/100g</td>
<td>560 mg/100g</td>
<td>429 mg/100g</td>
<td>500 mg/100g</td>
</tr>
<tr>
<td>Apfelsaft</td>
<td>224 mg/l</td>
<td>374 mg/l</td>
<td>434 mg/l</td>
<td>300 mg/l (Zusatz)</td>
</tr>
<tr>
<td>sw. Johannisbeerzucker</td>
<td>737 mg/l</td>
<td>Farbe stört</td>
<td>626 mg/l</td>
<td>300 mg/kg [9]</td>
</tr>
<tr>
<td>Orangensaft</td>
<td>419 mg/l</td>
<td>452 mg/l</td>
<td>516 mg/l</td>
<td>380 mg/l</td>
</tr>
<tr>
<td>Tomatensaft</td>
<td>57 mg/l</td>
<td>29 mg/l</td>
<td>272 mg/l</td>
<td>170 mg/kg [9]</td>
</tr>
</tbody>
</table>

Tab. 6 Ascorbinsäure-Bestimmung in Lebensmitteln mit verschiedenen Testmethoden

Als Gründe für dieses Verhalten lassen sich für jeden Einzelfall nur Vermutungen anstellen. Generell kann jedoch gesagt werden, daß die Lebensmittel (von den Vitaminbonbons einmal abgesehen) neben Ascorbinsäure noch andere reduzierende Inhaltsstoffe enthalten können und die zur Bestimmung eingesetzten Substanzen zeigen dann eine unterschiedliche Empfindlichkeit auf diese Stoffe.

In dem komplexen biologischen System Gurkensaft erwartet man neben Ascorbatoxidase sicherlich noch eine Reihe weiterer oxidativ wirkender Enzyme. Angenommen, die untersuchten Lebensmittel enthalten neben oxidierbaren Substanzen auch noch inhibitorisch wirksame Stoffe, so ist mit Abweichungen nach unten und oben zu rechnen.

Um hier mehr Gewissheit zu bekommen, wären Aufstockungsversuche sicherlich hilfreich.
4.5 Zusammenfassung der Ergebnisse

a) Ergebnisse der Messungen des O₂-Verbrauchs von Apfelsaft/Wasser-Mischungen

- Verschiedene Apfelsorten zeigen eine unterschiedliche Reaktivität mit Sauerstoff. Von den untersuchten Sorten reagierte Boskoop am schnellsten und Granny Smith am langsamsten.

- Den für die Messungen günstigsten Sauerstoffverbrauch zeigte Golden Delicious. In einigen Fällen kamen jedoch auch die Sorten Jona Gold und Boskoop zum Einsatz.

- Es besteht ein direkter Zusammenhang zwischen Apfelsaftbräunung und Sauerstoffverbrauch.

- Die Reaktionsgeschwindigkeit läßt sich durch eine Erhöhung der Sauerstoffkonzentration bis zu einem Wert von etwa 10 mg/l steigern, darüberhinaus ist keine nennenswerte Steigerung mehr möglich.

- Es ließ sich eine MICHAELIS-Konstante für Sauerstoff von Apfelsaft der Sorte Golden Delicious bestimmen. Diese ist aus enzymkinetischer Sicht ein Mischwert, der durch mehrere Enzyme und Substrate entsteht, dementsprechend gilt sie nur mit Einschränkungen.

- Folgende Behandlungen führten zu einer Abnahme der Geschwindigkeit des Sauerstoffverbrauchs:
 - Kochen
 - Tiefgefrieren
 - DDTC-Zusatz
 - Benzoesäure-Zusatz

- EDTA zeigte keine Wirkung auf die Reaktionsgeschwindigkeit.

- Mit DDTC konnte eine Abschätzung des Enzymgehalts vorgenommen werden.

- Mikroorganismen können die Messungen stören. EDTA wurde erfolgreich als Hemmstoff eingesetzt werden.

b) Ergebnisse aus den photometrischen und polarographischen Messungen bei Verwendung von Antioxidationsmitteln im Modellversuch

- Es konnte eine inhibierende Wirkung von Ascorbinsäure und Natriumsulfid auf die enzymatische Bräunung festgestellt

- Über photometrische Messungen war es möglich, am System PPO/Brenzcatechin die aufeinanderfolgende Bildung unterschiedlicher Produkte nachzuweisen. Diese können als End- und Zwischenprodukte einer Polymerisationsreaktion gedeutet werden.

c) Ergebnisse der Messungen des O₂-Verbrauchs von Tomatensaft/Wasser-Mischungen

- Der Sauerstoffverbrauch von Tomatensaft ließ sich eindeutig auf eine Spontanoxidation von Ascorbinsäure zurückführen. Das hier auftretende stöchiometrische Verhältnis von 1:1 konnte einem Modellversuch bestätigt werden. Hier konnte als eines der entstehenden Produkte Wasserstoffperoxid mit Titan(IV)-sulfat nachgewiesen werden, während das Teststäbchensystem der Firma Merck durch Ascorbinsäure empfindlich gestört wird.

d) Ergebnisse der Messungen des O₂-Verbrauchs von Gurkensaft/Wasser-Mischungen

- Die Messungen an Gurkensaft bestätigten Literaturangaben, nach denen Gurken das Enzym Ascorbatoxidase enthalten sollen.
- EDTA zeigte keine Wirkung auf die Reaktionsgeschwindigkeit

e) Ergebnisse der Messungen mit den konstruierten Biosensoren

- Die Biosensoren auf der Basis der CLARK-Meßzelle wurden zu folgenden Messungen erfolgreich eingesetzt:

Die Bananatrode ermöglichte die Bestimmung von zwei verschiedenen o-Dihydroxyphenolen mit einer Empfindlichkeit von 0,1 – 0,5 mmol/l.

Der Biosensor auf der Basis von Gurkensaft ermöglichte Ascorbinsäurebestimmungen im Bereich von etwa 50 – 600 mg/l.

- Bei vergleichenden Ascorbinsäurebestimmungen an Lebensmitteln mit drei Methoden (Bestimmung mit DCP1P, Molybdatophosphat und dem Biosensor) zeigten sich starke Unterschiede zwischen den einzelnen Testsystemen.
5. Abschließende Betrachtungen

Ziel dieser Arbeit war es, den Sauerstoffverbrauch von Lebensmittelinhaltstoffen, mit der Methode nach CLARK zu bestimmen. Es sind verschiedene Methoden zur Bestimmung des Sauerstoffverbrauchs bekannt, sie lassen sich grundsätzlich in zwei unterschiedliche Techniken einteilen.

a) Messung im Gasraum über der Probe
 - Gaschromatographische Bestimmung
 - Manometrische Bestimmung nach WARBURG

b) Gelöst-Sauerstoffmessung
 - Stöchiometrische Methode nach WINKLER
 - Polarographische Methode nach CLARK

In vielen Fällen, gerade im schulischen Bereich, scheitert die gaschromatographische Bestimmung am Fehlen der Apparate. Somit muß auf einfache Methoden zurückgegriffen werden.

Die manometrische Bestimmung nach WARBURG ist eine ältere Methode aus den 20er Jahren [41]. Diese mißt die Druckänderung in einer, über der Probe stehenden, Gasphase (Luft).

Im Gegensatz dazu wird bei der WINKLER-Methode und der hier angewandten Methode nach CLARK, direkt der Sauerstoff in der Probe bestimmt. Dabei muß die Probe nicht mit einer Gasphase im Gleichgewicht stehen.

\[
\Delta a(O_2, \text{Wasser}) > \Delta a(O_2, \text{Luft})^*
\]

Abb.79 Ein- und Zwei-Phasen-System

* Erläuterung im Text
Dieser Unterschied kann durch die Wahl des Volumenverhältnisses des Zwei-Phasen-Systems ausgeglichen werden. Wird der Gasraum verkleinert, so werden sich die Änderungen, bei gleichbleibendem Sauerstoffverbrauch der Probe, vergrößern.

Dementsprechend können Messungen beider Verfahren mit etwa gleicher Empfindlichkeit durchgeführt werden. Wobei der apparative Aufwand bei der manometrischen Messung in der Gasphase größer ist [41].

Die Methode nach WINKLER besitzt zwei Nachteile: erstens läßt sich der Verlauf einer schnellen Oxidation schlecht verfolgen und zweitens können Störungen durch Lebensmittelinhaltstoffe auftreten.

Somit sind polarographische Messungen in der wässrigen Phase anderer Meßtechniken vorzuziehen. Bei der Bestimmung des Sauerstoffverbrauchs von festen oder sehr viskosen Lebensmitteln (z.B. Butter, Kartoffelchips, Kaffee usw.), muß jedoch auf eines der anderen Verfahren zurückgegriffen werden.
Verwendete Literatur:

[1] ANTON DEIFEL, Die Chemie der Ascorbinsäure in Lebensmitteln; Chemie in unserer Zeit / 27. Jahrg. 1993 / Nr.4

[8] FRIEDHELM KOBEL, Vitamin C als Lebensmittel; Praxis der Naturwissenschaften – Chemie, Nr.3, 1988, Jahrg.37

[22] A.G.H. LEA: Farb und Gerbstoffe in englischen Mostäpfeln, Flüssiges Obst, Heft 8 / 1984,

[28] RUDOLF HEISS: Wichtige Erkenntnisse aus Forschungsarbeiten über sauerstoffarme Lebensmittelverpackungen und daraus ableitbare Marktchancen, neue Verpackung 5/84,

[31] Bedienungsanleitung für das Sauerstoffmessgerät OXI 92, wissenschaftlich-technische Werkstätten G.M.b.H

[34] MAURICE HANSSEN und JILL MARSDEN: E=eßbar?, Gesellschaft für Literatur und Bildung, Köln 1990

[41] O. KOELLE, Manometrie, B. Braun Apparatebau, Melsungen
Ascorbinsäure-Test
Teststäbchen zum Nachweis und zur halbquantitativen Bestimmung von Ascorbinsäure

Allgemeines
Mit dem Ascorbinsäure-Test kann nicht nur die natürlich vorkommende Ascorbinsäure (Vitamin C) in Lebensmitteln, z. B. Obst- und Gemüsesäfte, Erfrischungsgetränke, wie auch in Bier und Wein rasch bestimmt werden, sondern es kann auch die zur Stabilisierung und als Antioxidans in vielen Lebensmitteln, Wurstprodukten und Getränken zugesetzte Ascorbinsäure überprüft werden.

Auch der Vitamin C-Verlust bei Lagerung, Verarbeitung bzw. Zubereitung von Lebensmitteln ist feststellbar.

Mit dem Test läßt sich nicht nur in flüssigen Proben die Bestimmung durchführen, sondern es kann auch eine Direktbestimmung auf Oberflächen, z. B. auf frisch angeschnittenen Oberflächen von Obst, Gemüse oder Kartoffeln durchgeführt werden.

Bei der Vielzahl von Einsatzmöglichkeiten in vielen Lebensmittelbetrieben kann er hier die Betriebskontrolle rationalisieren und u. U. eine aufwendige labormäßige Bestimmung der Ascorbinsäure unnötig machen oder wenigstens reduzieren.

Analytik
Die Farbreaktion beruht auf der Reduktion des gelb gefärbten Phosphormolybdatokomplexes durch Ascorbinsäure zu Molybdänblau.

Gebrauchsanweisung
1. Teststäbchen 1 Sekunde in die zu untersuchende Lösung tauchen, bis die Reaktionszone voll benetzt wird.
2. Teststäbchen herausnehmen, überschüssige Flüssigkeit abtropfen lassen und nach 10 Sekunden Reaktionszone mit der Farbskala vergleichen.

Anmerkung
Da der Test auf einer Reduktionsreaktion beruht, können auch andere, mit Ascorbinsäure vergleichbare, Reduktionsmittel zu einer positiven Reaktion führen.

Lagerung
Die Packung sollte kühl (15-25 °C) und trocken gelagert werden. Dose sofort nach Eröffnung der benötigten Teststäbchen wieder verschließen.

Weitere Schnelltests

Ober das Gesamtprogramm informiert unser Prospekt Schnelltests zur Untersuchung von Wasser, Böden, Feststoffen, Lebensmitteln.

E. Merck, Postfach 41 19, D-6100 Darmstadt
Peroxid-Test

Teststäbchen zum Nachweism und zur halbquantitativen Bestimmung von Peroxiden

Allgemeines

In diesen Fällen sollte jeweils mit einer Labormethode eine Kontrollbestimmung auf Eignung des Peroxid-Teststäbchens durchgeführt werden.

Peroxid ist ein der in Kombination mit Peroxidumsetzung mit einem vollständigen Destillationssystems vollständigem Oxidationsprodukt, das auf Grund der Empfindlichkeit, funktionaler und vielseitiger Eigenschaften und ohne daß eine präzise Bestimmungsmethode entwickelt wird, auch im Lebensmittelbereich angewendet werden kann. Hierbei wird der Test zur Überwachung der vorgeschriebenen Einsatzmenge und der Inkorporation der Peroxidmengen nach einer erfolgten Desinfektion, wenn die Anlage oder der Produktionsstidolg gesperrt werden muß.

Bestimmungsmethode
Peroxid wird durch Peroxidumsetzung auf einem organischen Redoxindikator, der dann ein blaugrünes Oxidationsprodukt aufweist.

Die für die Reaktion erforderliche Feuchtigkeit wird im Falle der Überprüfung organischen Lösungsmittels eingegeben und durch kurze Einwirkung in destilliertes Wasser oder durch mehrfaches Ansaugen der Reaktionszone nach dem Einweichen in das Lösungsmittel geschehen.

Wäßrige Lösung
1. Teststäbchen entnehmen und Dose sofort wieder verschließen.
2. Teststäbchen 1 Sekunde in die zu untersuchende Lösung tauchen, daß die Reaktionszone voll benutzt wird.
3. Teststäbchen herausnehmen, überschüssige Flüssigkeit abtropfen und Reaktionszone nach 15 Sekunden mit der Farbtable vergleichen.

Organische Lösung (leicht flüchtige Eiherr)
1. Teststäbchen entnehmen und Dose sofort wieder verschließen.
2. Teststäbchen 1 Sekunde in das zu prüfende Lösungsmittel einweichen, daß die Reaktionszone voll benutzt wird.
4. a) 1 Sekunde in destilliertes Wasser einweichen, überschüssiges Wasser abschütteln oder
 b) vorsichtig in 3–5 Sekunden abschütteln.
4. Anschließend Reaktionszone nach 15 Sekunden mit der Farbtable vergleichen.

Anmerkungen
Einsatz in schwer flüchtigen Eiherrn. Sehr geringe Anreichen im Propekt Merkquant*.

Für die Anwendung innerhalb von 3 Minuten kann noch als positiver Befund gedeutet werden.

Die helle Reaktion wird nicht von rauchigen oder grünen bis braunen Farbtönen, so ist die Peroxidkonzentration für die Zuführung von Farbskala zu hoch. Es ist dann mit Wasser bzw. mit peroxydiertem Ether oder Petroleumnathren (40–60 °C) zu verdünnen und nach der Gewichteinweichen zu prüfen.

Anorganische Peroxide werden in wäßriger Lösung bei pH 2–12 bestimmt. (Messung der pH-Werte mit nichtlöslichen Universalindikatorstiften pH 0–14.) Gegebenenfalls wird die Lösung mit Chromataphat oder Silbersalz überprüft entsprechend eingestellt.

Für weitegehende Informationen (z. B. Testverfahren durch andere Anbieter und Katalogen) fordern Sie bitte unseren Propekt Merkquant* Tests an.

Lagerung

Weitere Schnelltests
Für die Bestimmung weiterer freier und Bindungsmussen stehen zahlreiche kolorimetrische und titri-
metrische Schnelltests sowie spezifische Merkquant* Teststäbchen zur Verfügung.

Über das Gesamtprogramm informieren unsere Prospekte „Schnelltests zur Untersuchung von Wasser, Böden, Pestiziden, Lebensmitteln“.

EMERK, 64271 Darmstadt Germany, Tel 061 51/735, Telex 4 193702 Oversei}

MERCK

Arzneimittelverordnung: Die Galle konzentriert besonders bei Patienten mit akuten Durchblutungsstörungen und bei Wärmebehandlung des Ohrs durchgeführt werden.
Product No. T-7755

TYROSINASE

(Monophenol mono-oxygenase; Polyphenol Oxidase; Catechol Oxidase;
Monophenol, dihydroxyphenylalanine: oxygen oxidoreductase; EC 1.14.18.1)

from Mushroom

Lot 2419542

Enzyme Activities

Tyrosinase Activity: 4,400 Units/mg solid

Unit Definition: One unit will cause an increase in A_{290nm} of 0.001 per minute at pH 6.5 at 25°C in a 3 ml reaction mixture containing L-tyrosine.

Polyphenol Oxidase Activity: 84,000 Units/mg solid

Unit Definition: One unit will cause a decrease in A_{265nm} of 0.001 per minute at pH 6.5 at 25°C in a 3 ml reaction mixture containing L-3,4-dihydroxyphenylalanine (L-DOPA).

Catechol Oxidase Activity: 400,000 Units/mg solid

Unit Definition: One unit will cause a decrease in A_{265nm} of 0.001 per minute at pH 6.5 at 25°C in 3 ml reaction mixture containing catechol and ascorbic acid.

Specific details as assay procedures are available upon request.

SIGMA warrants that its products conform to the information contained in this and other Sigma publications. Purchaser must determine the suitability of the product for its particular use. See reverse side of invoice or packing slip for additional terms and conditions of sale.

Satisfaction is always guaranteed when you use SIGMA Reagents.

In the USA/Canada call:
1-800-325-3010 for orders
and 1-800-325-8070
for customer service.

Outside the USA/Canada call collect: 314-771-5750 for orders
and 314-771-5765
for customer service.

P.O. BOX 14508, ST. LOUIS, MO 63178 USA

Printed in the USA

Hannover, 28. Juli 1995

[Signature]